重练算法(代码随想录版) day55 - 图论part5

今日刷题量:1
当前刷题总量:186
Easy: 64
Mid: 110
Hard: 12

Day55
解题思想
并查集理论基础
1.并查集主要功能:

  • 寻找根节点,函数:find(int u),也就是判断这个节点的祖先节点是哪个
  • 将两个节点接入到同一个集合,函数:join(int u, int v),将两个节点连在同一个根节点上
  • 判断两个节点是否在同一个集合,函数:isSame(int u, int v),就是判断两个节点是不是同一个根节点

2.并查集代码模版:

点击查看代码
int n = 1005; // n根据题目中节点数量而定,一般比节点数量大一点就好
vector<int> father = vector<int> (n, 0); // C++里的一种数组结构

// 并查集初始化
void init() {
    for (int i = 0; i < n; ++i) {
        father[i] = i;
    }
}
// 并查集里寻根的过程
int find(int u) {
    return u == father[u] ? u : father[u] = find(father[u]); // 路径压缩
}

// 判断 u 和 v是否找到同一个根
bool isSame(int u, int v) {
    u = find(u);
    v = find(v);
    return u == v;
}

// 将v->u 这条边加入并查集
void join(int u, int v) {
    u = find(u); // 寻找u的根
    v = find(v); // 寻找v的根
    if (u == v) return ; // 如果发现根相同,则说明在一个集合,不用两个节点相连直接返回
    father[v] = u;
}

3.压缩路径来缩短查询根节点的时间

  • father[u] = find(father[u])
  • 路径压缩后的并查集时间复杂度在O(logn)与O(1)之间,且随着查询或者合并操作的增加,时间复杂度会越来越趋于O(1)。
  • 在第一次查询的时候,相当于是n叉树上从叶子节点到根节点的查询过程,时间复杂度是logn,但路径压缩后,后面的查询操作都是O(1),而 join 函数 和 isSame函数 里涉及的查询操作也是一样的过程
  • 空间复杂度: O(n) ,申请一个father数组

4.按秩(rank)合并

  • 按秩合并的代码模版:
点击查看代码
int n = 1005; // n根据题目中节点数量而定,一般比节点数量大一点就好
vector<int> father = vector<int> (n, 0); // C++里的一种数组结构
vector<int> rank = vector<int> (n, 1); // 初始每棵树的高度都为1

// 并查集初始化
void init() {
    for (int i = 0; i < n; ++i) {
        father[i] = i;
        rank[i] = 1; // 也可以不写
    }
}
// 并查集里寻根的过程
int find(int u) {
    return u == father[u] ? u : find(father[u]);// 注意这里不做路径压缩
}

// 判断 u 和 v是否找到同一个根
bool isSame(int u, int v) {
    u = find(u);
    v = find(v);
    return u == v;
}

// 将v->u 这条边加入并查集
void join(int u, int v) {
    u = find(u); // 寻找u的根
    v = find(v); // 寻找v的根

    if (rank[u] <= rank[v]) father[u] = v; // rank小的树合入到rank大的树
    else father[v] = u;

    if (rank[u] == rank[v] && u != v) rank[v]++; // 如果两棵树高度相同,则v的高度+1,因为上面 if (rank[u] <= rank[v]) father[u] = v; 注意是 <=
}

练习题目
107.寻找存在的路径)(easy):https://kamacoder.com/problempage.php?pid=1179

posted @ 2025-12-29 05:58  GengarF  阅读(4)  评论(0)    收藏  举报