集合
集合
集合、数组都是对多个数据进行存储操作,简称java容器,此时的存储主要是指内存层次的存储,不涉及数据的持久化
数组:
一旦初始化就不可以改变长度
一旦定义好,就不可以改变元素类型
java集合可以分为两种体系:Colleaction和Map两种体系
Collection接口:单列数据,存储一组对象
List:元素有序、可重复
Set:元素无序、不可重复
Map:双列数据,保存具有映射关系(Key-Value)


Collection接口
add(Object e)将元素添加到Colleaction中
addAll(Collection e)将集合e 添加到当前集合
size()返回当前集合的大小(元素的个数)
IsEmpty()集合是否为空
clear()清空集合元素
contains(Object obj)判断当前集合中是否包含obj(基本数据类型会自动装箱为包装类,引用数据类型进行比较的时候使用的是equals方法(即没有重写equals方法的话,我们是比较的引用))
package com.geng;
import java.util.ArrayList;
import java.util.Collection;
import java.util.stream.Collector;
public class CollectionTest {
public static void main(String[] args){
Collection<Object> collection=new ArrayList<>();
collection.add(new Student("geng","xiajin"));
System.out.println(collection.contains(new Student("geng","xiajin")));//false
}
}
class Student{
private String name;
private String address;
public Student() {
}
public Student(String name, String address) {
this.name = name;
this.address = address;
}
}
package com.geng;
import java.util.ArrayList;
import java.util.Collection;
import java.util.stream.Collector;
public class CollectionTest {
public static void main(String[] args){
Collection<Object> collection=new ArrayList<>();
collection.add("123");
collection.add(new Student("geng","xiajin"));
System.out.println(collection.contains(new Student("geng","xiajin")));
}
}
class Student{
private String name;
private String address;
public Student() {
}
public Student(String name, String address) {
this.name = name;
this.address = address;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public String getAddress() {
return address;
}
public void setAddress(String address) {
this.address = address;
}
public boolean equals(Object obj) {
System.out.println("调用了equals方法");
//此处一定要加上这个if条件,如果不加的话,我们知道在进行contains函数的时候,集合中的每一个元素都会当作equals的形参进行执行。
//如果不可以当作Student实例化的对象可以直接返回false,如果不进行判断的话,他们就会在进行强制类型转换的时候报错
if(obj instanceof Student){
Student student=(Student)obj;
if(student.getName()==this.name&&student.getAddress()==this.getAddress()){
return true;
}
return false;
}
return false;
}
}
remove(Object obj)方法,也是调用equals方法进行比较
removeAll(Collection coll)方法
package com.geng;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.stream.Collector;
public class CollectionTest {
public static void main(String[] args){
Collection<Object> collection=new ArrayList<>();
collection.add("123");
collection.add(new Student("geng","xiajin"));
collection.add(new Student("peng","dezhou"));
collection.add(new Student("gyp","shandong"));
Collection collection1= Arrays.asList(new Student("peng","dezhou"),new Student("wula","wula"));
collection.removeAll(collection1);
collection.remove(new Student("geng","xiajin"));
System.out.println(collection.toString());
}
}
class Student{
private String name;
private String address;
public Student() {
}
public Student(String name, String address) {
this.name = name;
this.address = address;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public String getAddress() {
return address;
}
public void setAddress(String address) {
this.address = address;
}
@Override
public String toString() {
return "Student{" +
"name='" + name + '\'' +
", address='" + address + '\'' +
'}';
}
public boolean equals(Object obj) {
System.out.println("调用了equals方法");
//此处一定要加上这个if条件,如果不加的话,我们知道在进行contains函数的时候,集合中的每一个元素都会当作equals的形参进行执行。
//如果不可以当作Student实例化的对象可以直接返回false,如果不进行判断的话,他们就会在进行强制类型转换的时候报错
if(obj instanceof Student){
Student student=(Student)obj;
if(student.getName()==this.name&&student.getAddress()==this.getAddress()){
return true;
}
return false;
}
return false;
}
}

toArray()集合转换成数组(数组类型和Collection泛型类型一样)
List<Integer> list=Arrays.asList(12,213);
List的泛型是不可以为int的,因为集合中使用的是包装类。
数组也可以通过asList()转换成集合
iterator()返回Iterator接口的实例(可以用于遍历集合元素)
Iterator
Iterator对象称为迭代器(设计模式的一种),主要用于遍历集合中的元素,他主要是为了实现:提供一种方法访问一个容器对象中的各个元素,而又不暴露该对象的内部细节。
Collection接口继承了java.lang.Iterable接口,该接口有一个iterator()方法,在Colleaction中实现了这个接口,返回了一个Iterator对象。
iterator()方法每次调用都会得到一个全新的迭代器对象,默认的游标在集合的第一个元素之前。
常用方法为
hasNext()判断指针下移后是否有元素
和
next()先指针下移,再取出当前指针的元素
public static void main(String[] args){
Collection collection=new ArrayList();
collection.add("123");
collection.add("456");
collection.add("123");
collection.add("456");
Iterator iterator=collection.iterator();
while(iterator.hasNext()){
System.out.println(iterator.next().toString());
}
}
常见的两种错误使用方式:
public static void main(String[] args){
Collection collection=new ArrayList();
collection.add("123");
collection.add("456");
collection.add("123");
collection.add("456");
//错误一
Iterator iterator1=collection.iterator();
while(iterator1.next()!=null){
System.out.println(iterator1.next().toString());
}
//错误二
while(collection.iterator().hasNext()){
System.out.println(collection.iterator().next());
}
}
迭代器的remove方法(和集合的remove方法不同)
public static void main(String[] args){
Collection collection=new ArrayList();
collection.add("123");
collection.add("456");
collection.add("123");
collection.add("456");
Iterator iterator=collection.iterator();
while(iterator.hasNext()){
String str=(String) iterator.next();
if("123".equals(str)){
iterator.remove();
}
}
iterator=collection.iterator();
while(iterator.hasNext()){
System.out.println(iterator.next().toString());
}
}
增强for循环foreach(jdk5.0新增,可以用于遍历数组、集合)
for( a: b){
}
List接口(动态数组)
一般看成是数组的替代(List中元素有序并且可以重复)
java中List接口的实现类常用的有三个ArrayList LinkedList Vector
jdk1.0的时候就出现了vector。jdk1.2的时侯有了list接口,并且将vector作为了接口实现类之一
ArrayList :线程不安全,底层是使用的Object数组(查询、修改效率较高)
Vector:线程安全,底层是使用的是Object数组
LinkedList:底层是使用的是链表结构(双向链表)(频繁增删操作的话效率较高)
ArrayList源码分析:
jdk7:
空参构造器默认创建一个长度为10的数组
add函数:
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
jdk8:
使用空参构造器的时候,是不会创建数组的的(空数组),在调用add函数的时候会执行以此判断
private static int calculateCapacity(Object[] elementData, int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;
}
类似于懒汉式和饿汉式的区别(单例模式样例)
LinkedList源码分析
Node内部类数组
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
两个类似于指针的属性:头指针和尾指针------------双向链表
transient Node<E> first;
transient Node<E> last;
Vector
在jdk7 和jdk8中都是使用了饿汉式空参的构造方法,在扩容方面默认扩容为原来的2倍(ArrayList扩容为1.5倍)
常用方法:

所以在list接口中,就容易出现一些重写方法的问题(关于参数是否自动装箱)
import org.junit.Test;
import java.util.ArrayList;
import java.util.List;
public class ListTest {
@Test
public void test01(){
List list=new ArrayList();
list.add(1);
list.add(2);
list.add(3);
/* updateList1(list);
System.out.println(list);//1 2*/
/* updateList2(list);
System.out.println(list);//1 3*/
}
private static void updateList1(List list){
list.remove(2);
}
private static void updateList2(List list){
list.remove(new Integer(2));
}
}
Set接口 无序不可重复
set接口中没有额外添加的方法,都是collection中的方法
HashSet:线程不安全、可以存储null值
LinkedHashSet:HashSet的子类使用链表结构,可以按照添加顺序进行遍历
TreeSet:可以按照添加对象的指定属性进行排序
无序性:按照数据的hash值进行存储(hash值决定存储位置)
不可重复性:hash值用来判断两个元素是否是相同的(可以通过equals和hashCode方法进行改变重复性的规则)
HashSet中使用add添加元素的过程

我们向HashSet中添加元素a,首先会调用他的hashCode方法,计算a的哈希值,此哈希值接着通过某种算法九三出他在HashSet底层数组中的存放位置(索引位置),判断这个位置上是否有元素值,如果为null,则直接进行添加,如果存在一个元素(或者是链表)则比较元素a和元素b的hash值,如果hash值不同·,则直接进行添加,如果相同在通过equals方法进行比较。
此时注意如果是在jdk7中我们是将新增加的元素放在链表的头部,jdk8中是放在尾部。(七上八下)
Object中的hashCode方法是随机值。我们在这里对hashCode进行重写的唯一规则就是如果他们两个是相同(值相同)的我们必须将他们的hashCode结果一样,如果是不同的就随意可以一样也可以不一样。
31这个数为什么经常当作系数:
1、我们选择系数的时候要选择尽量大的数,因为系数越大,你的基数之间的差别就会被放大的越大。
2、31只占5bit,造成溢出的概率比较小。
3、31可以由i*31==(i<<5)-1来表示。
4、31是一个素数,素数作用是:如果我用一个数和素数相乘,那么只会多出一个因子出来,这样也可以减少冲突
import org.junit.Test;
import java.util.*;
public class ListTest {
@Test
public void test01(){
Set<MyStudent> students=new HashSet<MyStudent>();
students.add(new MyStudent(12,"geng"));
students.add(new MyStudent(12,"geng"));
students.add(new MyStudent(13,"geng"));
students.add(new MyStudent(13,"geng"));
students.add(new MyStudent(14,"geng"));
students.add(new MyStudent(14,"geng"));
Iterator iterator=students.iterator();
while(iterator.hasNext()){
System.out.println(iterator.next());
}
}
}
class MyStudent{
private int age;
private String name;
public MyStudent(int age, String name) {
this.age = age;
this.name = name;
}
public MyStudent() {
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
//if (o == null || getClass() != o.getClass()) return false;
if(!(o instanceof MyStudent)) return false;
MyStudent myStudent = (MyStudent) o;
return age == myStudent.age &&
Objects.equals(name, myStudent.name);
}
@Override
public int hashCode() {
int result=name!=null?name.hashCode():0;
result=31*result+age;
return result;
}
@Override
public String toString() {
return "MyStudent{" +
"age=" + age +
", name='" + name + '\'' +
'}';
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
}
LinkedHashSet

在原有hashSet的基础上又提供了一对双向链表,保证顺序(此处的顺序不是有序性)
TreeSet(由于我们TreeSet可以实现排序功能,所以要求元素应该是同一个类的对象)
TreeSet不是通过hashCode和equals方法进行判断,而是通过compareTo方法(如果compareTo方法返回结果为0,则两个元素相同)
import org.junit.Test;
import java.util.*;
public class ListTest {
@Test
public void test01(){
Set<MyStudent> students=new TreeSet<MyStudent>();
students.add(new MyStudent(12,"geng"));
students.add(new MyStudent(12,"peng"));
students.add(new MyStudent(13,"geng"));
students.add(new MyStudent(13,"seng"));
students.add(new MyStudent(14,"geng"));
students.add(new MyStudent(14,"qeng"));
Iterator iterator=students.iterator();
while(iterator.hasNext()){
System.out.println(iterator.next());
}
}
}
class MyStudent implements Comparable{
private int age;
private String name;
public MyStudent(int age, String name) {
this.age = age;
this.name = name;
}
public MyStudent() {
}
@Override
public int compareTo(Object o) {
if(o instanceof MyStudent){
MyStudent myStudent=(MyStudent)o;
int result=this.getName().compareTo(myStudent.getName());
if(result==0){
return this.getAge()-myStudent.getAge();
}
return result;
}
else{
throw new RuntimeException("类型不同");
}
}
@Override
public String toString() {
return "MyStudent{" +
"age=" + age +
", name='" + name + '\'' +
'}';
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
}
也可以通过Comparator方法进行排序,创建一个Comparator对象,将他作为TreeSet构造器中的参数。
import org.junit.Test;
import java.util.*;
public class ListTest {
@Test
public void test01(){
Comparator comparator=new Comparator() {
@Override
public int compare(Object o1, Object o2) {
if(o1 instanceof MyStudent&&o2 instanceof MyStudent){
MyStudent myStudent1=(MyStudent)o1;
MyStudent myStudent2=(MyStudent)o2;
return -myStudent1.compareTo(myStudent2);
}
else{
throw new RuntimeException("类型不同");
}
}
};
Set<MyStudent> students=new TreeSet<MyStudent>(comparator);
students.add(new MyStudent(12,"geng"));
students.add(new MyStudent(12,"peng"));
students.add(new MyStudent(13,"geng"));
students.add(new MyStudent(13,"seng"));
students.add(new MyStudent(14,"geng"));
students.add(new MyStudent(14,"qeng"));
Iterator iterator=students.iterator();
while(iterator.hasNext()){
System.out.println(iterator.next());
}
}
}
class MyStudent implements Comparable{
private int age;
private String name;
public MyStudent(int age, String name) {
this.age = age;
this.name = name;
}
public MyStudent() {
}
@Override
public int compareTo(Object o) {
if(o instanceof MyStudent){
MyStudent myStudent=(MyStudent)o;
int result=this.getName().compareTo(myStudent.getName());
if(result==0){
return this.getAge()-myStudent.getAge();
}
return result;
}
else{
throw new RuntimeException("类型不同");
}
}
@Override
public String toString() {
return "MyStudent{" +
"age=" + age +
", name='" + name + '\'' +
'}';
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
}
一道很经典的题目:
import org.junit.Test;
import java.util.HashSet;
import java.util.Set;
public class MySetTest {
@Test
public void test01(){
Set<OurStudent> students=new HashSet<>();
OurStudent ourStudent1=new OurStudent(12,"aa");
OurStudent ourStudent2=new OurStudent(14,"bb");
students.add(ourStudent1);
students.add(ourStudent2);
System.out.println(students);
ourStudent1.setName("cc");
students.remove(ourStudent1);
//此处remove的时候,计算这个ourStudent1的hashCode,因为name已经改了,所以大概率无法到达相同的索引,所以大概率无法删除
System.out.println(students);
students.add(new OurStudent(14,"cc"));
//此处添加的时候,也是同样的道理,两个“相同”的元素大概率不在同一个索引上,所以大概率可以添加成功
System.out.println(students);
}
}
class OurStudent{
private int age;
private String name;
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public OurStudent(int age, String name) {
this.age = age;
this.name = name;
}
public OurStudent() {
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if(!(o instanceof OurStudent))return false;
OurStudent that = (OurStudent) o;
if (age != that.age) return false;
return name != null ? name.equals(that.name) : that.name == null;
}
@Override
public int hashCode() {
int result = age;
result = 31 * result + (name != null ? name.hashCode() : 0);
return result;
}
@Override
public String toString() {
return "OurStudent{" +
"age=" + age +
", name='" + name + '\'' +
'}';
}
}

Map接口

Hashtable:jdk1.0时出现,jdk1.2的时候成为Map接口的实现类,线程安全,不可以存储null的key和value
LinkedHashMap:jdk1.2的时候出现,HashMap的子类
HashMap:jdk1.2时出现,线程不安全,可以存储null的key和value
SortedMap:jdk1.2时出现
Properties:key和value都是String类型,是Hashtable的子类
HashMap在jdk7中的源码分析
底层创建了一个Entry[] table数组。长度为16
其实key就是一个集合。。。。。。。。。。。。原理差不多。
1、在hashMap中,我们是根据一个内部静态方法获取hashcode
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
HashMap在jdk8中的源码分析
底层没有创建Entry[] table数组,使用Node[] table,首次进行put的时候,底层会创建长度为十六的Node[] 。底层结构中使用了红黑树(当数组中某个索引位置上的元素以链表的形式存在的个数超过了8,并且当前数组长度大于64的时候,此索引位置处所有的数据使用红黑树进行存储,以便提高搜索速度)。
空参构造器:
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
static final float DEFAULT_LOAD_FACTOR = 0.75f;
Node内部类:
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
其实本质还是一个Entry
put方法:
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
红黑树中的put
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
int h, K k, V v) {
Class<?> kc = null;
boolean searched = false;
TreeNode<K,V> root = (parent != null) ? root() : this;
for (TreeNode<K,V> p = root;;) {
int dir, ph; K pk;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0) {
if (!searched) {
TreeNode<K,V> q, ch;
searched = true;
if (((ch = p.left) != null &&
(q = ch.find(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.find(h, k, kc)) != null))
return q;
}
dir = tieBreakOrder(k, pk);
}
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
Node<K,V> xpn = xp.next;
TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
if (dir <= 0)
xp.left = x;
else
xp.right = x;
xp.next = x;
x.parent = x.prev = xp;
if (xpn != null)
((TreeNode<K,V>)xpn).prev = x;
moveRootToFront(tab, balanceInsertion(root, x));
return null;
}
}
}
DEFAULT_INITIAL_CAPACITY:HashMap默认容量是16
DEFAULT_LOAD_FACTOR:HashMap的默认加载因子 0.75
threadhold:扩容的临界值 = 容量*加载因子
TREEIFY_THRESHOLD:Bucket中链表长度大于该默认值,转换成为红黑树 8
MIN_TREEIFY_CAPACITY:桶中的Node被树化时最小的hash表容量64
Map接口中定义的方法

clear只清除数据!!!!!!!!!!!!
import org.junit.Test;
import java.util.*;
public class MapTest {
@Test
public void test(){
Map<Object,Object> map=new HashMap<>();
map.put("123",1234);
map.put("gyp",666);
map.put(123,"12455");
//获取所有的key
Set<Object> set=map.keySet();
Iterator iterator1=set.iterator();
while(iterator1.hasNext()){
System.out.println(iterator1.next());
}
//获取所有的value
Collection<Object> list=map.values();
Iterator iterator2=list.iterator();
while(iterator2.hasNext()){
System.out.println(iterator2.next());
}
//获取key-value对
Set<Map.Entry<Object, Object>> entries = map.entrySet();
Iterator iterator3=entries.iterator();
while(iterator3.hasNext()){
Map.Entry entry=(Map.Entry)iterator3.next();
System.out.println(entry.getKey()+" "+entry.getValue());
}
}
}
TreeMap 参考TreeSet即可
Properties一般用于处理属性文件
将配置文件中读取到内存中。
import org.junit.Test;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.util.Properties;
public class PropertiesTest {
@Test
public void test01() throws IOException {
Properties properties=new Properties();
FileInputStream fileInputStream=new FileInputStream("lala.properties");
properties.load(fileInputStream);
System.out.println(properties.getProperty("name"));
System.out.println(properties.get("password"));
System.out.println(properties.getProperty("age"));
}
fileInputStream.close();
}
Collections工具类



浙公网安备 33010602011771号