A new Graph Game
题意:给你一张N个节点的无向图。然后给出M条边,给出第 I 条边到第J条边的距离。然后问你是否存在子环,假设存在,则输出最成环的最短距离和
解析:构图:选定源点及汇点,然后将源点至个点流量置为1,花费置为0.然后使用最小费用流,当返回值流量和,即flow < n 时。则输出NO。由于全部边成环最少边数为N。
其余和tour一样求法。处理一下某两点距离为最短距离就可以。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int maxn = 10000;
const int maxm = 100000;
const int INF = 0xfffffff;
struct Edge{
int to, next, cap, flow, cost;
}edge[ maxm ];
int head[ maxn ], tol;
int pre[ maxn ], dis[ maxn ];
bool vis[ maxn ];
int N;
void init( int n ){
N = n;
tol = 0;
memset( head, -1, sizeof( head ) );
}
void addedge( int u, int v, int cap, int cost ){
edge[ tol ].to = v;
edge[ tol ].cap = cap;
edge[ tol ].cost = cost;
edge[ tol ].flow = 0;
edge[ tol ].next = head[ u ];
head[ u ] = tol++;
edge[ tol ].to = u;
edge[ tol ].cap = 0;
edge[ tol ].cost = -cost;
edge[ tol ].flow = 0;
edge[ tol ].next = head[ v ];
head[ v ] = tol++;
}
bool spfa( int s, int t ){
queue< int > q;
for( int i = 0; i < N; ++i ){
dis[ i ] = INF;
vis[ i ] = false;
pre[ i ] = -1;
}
dis[ s ] = 0;
vis[ s ] = true;
q.push( s );
while( !q.empty( ) ){
int u = q.front();
q.pop();
vis[ u ] = false;
for( int i = head[ u ]; i != - 1; i = edge[ i ].next ){
int v = edge[ i ].to;
if( edge[ i ].cap > edge[ i ].flow && dis[ v ] > dis[ u ] + edge[ i ].cost ){
dis[ v ] = dis[ u ] + edge[ i ].cost;
pre[ v ] = i;
if( !vis[ v ] ){
vis[ v ] = true;
q.push( v );
}
}
}
}
if( pre[ t ] == -1 )
return false;
else
return true;
}
struct node{
int f, c;
};
//node a;
node minCostMaxflow( int s, int t, int &cost ){
int flow = 0;
cost = 0;
while( spfa( s, t ) ){
int Min = INF;
for( int i = pre[ t ]; i != - 1; i = pre[ edge[ i ^ 1 ].to ] ){
if( Min > edge[ i ].cap - edge[ i ].flow )
Min = edge[ i ].cap - edge[ i ].flow;
}
for( int i = pre[ t ]; i != -1; i = pre[ edge[ i ^ 1 ].to ] ){
edge[ i ].flow += Min;
edge[ i ^ 1 ].flow -= Min;
cost += edge[ i ].cost * Min;
}
flow += Min;
}
node ans;
ans.f = flow;
ans.c = cost;
return ans;
}
#define INF 0xfffffff
int mapp[ maxn ][ maxn ];
int main(){
int Case;
int n, m;
scanf( "%d", &Case );
for( int k = 1; k <= Case; ++k ){
scanf( "%d%d", &n, &m );
for( int i = 0; i <= n; ++i ){
for( int j = 0; j <= n; ++j ){
mapp[ i ][ j ] = INF;
}
}
int start = 0, end = 2 * n + 1, N = 2 * n + 2;
init( N );
int x, y, value;
for( int i = 1; i <= n; ++i ){
addedge( 0, i, 1, 0 );
addedge( n + i, end, 1, 0 );
}
int Max = 0;
for( int i = 0; i < m; ++i ){
scanf( "%d%d%d", &x, &y, &value );
int temp = max( x, y );
if( Max < temp ){
Max = temp;
}
if( mapp[ x ][ y ] > value ){
mapp[ x ][ y ] = mapp[ y ][ x ] = value;
}
}
for( int i = 1; i <= n ; ++i ){
for( int j = 1; j <= n; ++j ){
if( mapp[ i ][ j ] != INF ){
addedge( i, n + j, 1, mapp[ i ][ j ] );
}
}
}
int cost;
node ans = minCostMaxflow( start, end, cost );
printf( "Case %d: ", k );
if( ans.f >= n ){
printf( "%d\n", ans.c );
}
else{
puts( "NO" );
}
}
return 0;
}
浙公网安备 33010602011771号