商品零售购物篮分析
#8-1
import numpy as np
import pandas as pd
inputfile="D:\数据分析\GoodsOrder.csv"
data=pd.read_csv(inputfile,encoding = 'gbk')
data.info()
data=data['id']
description=[data.count(),data.min(),data.max()]
description=pd.DataFrame(description,index=['Count','Min','Max']).T
print('描述性统计结果:\n',np.round(description))

#8-2
import pandas as pd
inputfile="D:\数据分析\GoodsOrder.csv"
data=pd.read_csv(inputfile,encoding='gbk')
group=data.groupby(['Goods']).count().reset_index()
sorted=group.sort_values('id',ascending=False)
print('销量排行前10商品的销量:\n',sorted[:10])
import matplotlib.pyplot as plt
x=sorted[:10]['Goods']
y=sorted[:10]['id']
plt.figure(figsize=(8,4))
plt.barh(x,y)
plt.rcParams['font.sans-serif']='SimHei'
plt.xlabel('销量')
plt.ylabel('商品类别')
plt.title('学号3108商品的销量TOP10')
plt.savefig("D:/数据分析/top10.png")
plt.show()
data_nums=data.shape[0]
for index,row in sorted[:10].iterrows():
print(row['Goods'],row['id'],row['id']/data_nums)


#8-3
import pandas as pd
inputfile1="D:\数据分析\GoodsOrder.csv"
inputfile2 ="D:\数据分析\GoodsTypes.csv"
data= pd.read_csv(inputfile1,encoding='gbk')
types = pd.read_csv(inputfile2,encoding='gbk')
group = data.groupby(['Goods']).count().reset_index()
sort = group.sort_values( 'id',ascending=False).reset_index()
datanums=data.shape[0]
del sort['index']
sort_links= pd.merge(sort,types)
sort_link = sort_links.groupby(['Types']).sum().reset_index()
sort_link = sort_link.sort_values('id',ascending=False).reset_index()
del sort_link['index']
sort_link['count'] = sort_link.apply(lambda line: line['id']/data_nums,axis=1)
sort_link.rename(columns={'count':'percent'},inplace=True)
print('各类别商品的销量及其占比:\n',sort_link)
outfile1='D:/数据分析/percent.csv'
sort_link.to_csv(outfile1,index=False,header=True,encoding='gbk')
import matplotlib.pyplot as plt
data = sort_link['percent']
labels = sort_link['Types']
plt.figure(figsize=(8,6))
plt.pie(data,labels=labels,autopct='%1.2f%%')
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title('学号3108每类商品销量占比')
plt.savefig('D:/数据分析/persent.png')
plt.show()

#8-4
selected= sort_links.loc[sort_links['Types'] =='非酒精饮料']
child_nums= selected['id'].sum()
selected['child_percent'] = selected.apply(lambda line: line['id']/child_nums,axis=1)
selected.rename(columns={'id':'count'},inplace=True)
print('非酒精饮料内部商品的销量及其占比:\n',selected)
outfile2='D:/数据分析/child percent.csv'
sort_link.to_csv(outfile2,index=False,header=True,encoding='gbk')
import matplotlib.pyplot as plt
data = selected['child_percent']
labels = selected['Goods']
plt.figure(figsize=(8,6))
explode = (0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.08,0.3,0.1,0.3)
plt.pie(data,explode=explode,labels=labels,autopct='%1.2f%%',pctdistance=1.1,labeldistance=1.2)
plt.rcParams['font.sans-serif'] ='SimHei'
plt.title('学号3108非酒精饮料内部各商品的销量占比')
plt.axis('equal')
plt.savefig('D:/数据分析/child_persent.png')
plt.show()



浙公网安备 33010602011771号