线性回归-误差项分析

线性回归-误差项分析

当我们用线性回归模型去做回归问题时,会接触到误差项这个概念

对于一个线性回归模型

y(i)=θTxiy^{(i)}=\theta^Tx^{i}
其实往往不能准确预测数据的真实值,这是很正常的,各种各样的因素会使真实值很难符合线性分布,但对于有些数据分布总体会符合线性分布,但不能完全接近,这是很合理的。对于那些很接近线性分布的数据,可以训练模型去尽量的拟合数据。

对于每一个样本其实会有这样一个公式:
y(i)=θTxi+ε(i)y^{(i)}=\theta^Tx^{i}+\varepsilon^{(i)}
其中ε(i)\varepsilon^{(i)}就叫做误差项,如果这个误差项分布符合均值为0的正太分布,那么我们就可以认为我们得到的模型是正常的,也就是说得到了一个线性回归合理的模型。但要做到这一步,跟数据的真实分布是有很大关系的。

posted @ 2020-05-09 23:11  高兴_00  阅读(1565)  评论(0编辑  收藏  举报