随机森林

随机森林

组合分类器的概念
最终结果由多个分类器的结果投票表决,或者取多个分类器的平均值等。
森林:顾名思义就是树的组合。

决策树相当于一个大师,通过自己在数据集中学到的知识对于新的数据进行分类。但是俗话说得好,一个诸葛亮,玩不过三个臭皮匠。随机森林就是希望构建多个臭皮匠,希望最终的分类效果能够超过单个大师的一种算法

定义

随机森林是一个典型的多个决策树的组合分类器。主要包括两个方面:数据的随机性选取,以及待选特征的随机选取。

数据的随机性选取

从原始的数据集中采取有放回的抽样(bootstrap),构造子数据集,子数据集的数据量是和原始数据集相同的。不同子数据集的元素可以重复,同一个子数据集中的元素也可以重复。

利用子数据集来构建子决策树,将这个数据放到每个子决策树中,每个子决策树输出一个结果。最后,如果有了新的数据需要通过随机森林得到分类结果,就可以通过对子决策树的判断结果的投票,得到随机森林的输出结果了。属于哪类的结果多,就归为哪一类

如下图,假设随机森林中有3棵子决策树,2棵子树的分类结果是A类,1棵子树的分类结果是B类,那么随机森林的分类结果就是A类

待选特征的随机选取:

与数据集的随机选取类似,随机森林中的子树的每一个分裂过程并未用到所有的待选特征,而是从所有的待选特征中随机选取一定的特征,之后再在随机选取的特征中选取最优的特征。这样能够使得随机森林中的决策树都能够彼此不同,提升系统的多样性,从而提升分类性能

构造过程

机森林的构造过程:

  1. 假如有N个样本,则有放回的随机选择N个样本(每次随机选择一个样本,然后返回继续选择)。这选择好了的N个样本用来训练一个决策树,作为决策树根节点处的样本。

  2. 当每个样本有M个属性时,在决策树的每个节点需要分裂时,随机从这M个属性中选取出m个属性,满足条件m << M。然后从这m个属性中采用某种策略(比如说信息增益)来选择1个属性作为该节点的分裂属性。

  3. 决策树形成过程中每个节点都要按照步骤2来分裂(很容易理解,如果下一次该节点选出来的那一个属性是刚刚其父节点分裂时用过的属性,则该节点已经达到了叶子节点,无须继续分裂了)。一直到不能够再分裂为止。注意整个决策树形成过程中没有进行剪枝。

  4. 按照步骤1~3建立大量的决策树,这样就构成了随机森林了。【zhihu】

特点

在数据集上表现良好,两个随机性的引入,使得随机森林不容易陷入过拟合
训练速度快,可以得到变量重要性排序(两种:基于OOB误分率的增加量和基于分裂时的GINI下降量
它能够处理很高维度(feature很多)的数据,并且不用做特征选择,对数据集的适应能力强:既能处理离散型数据,也能处理连续型数据,数据集无需规范化
训练速度快,可以得到变量重要性排序(两种:基于OOB误分率的增加量和基于分裂时的GINI下降量

随机森林(random forest)是一种利用多个分类树对数据进行判别与分类的方法,它在对数据进行分类的同时,还可以给出各个变量(基因)的重要性评分,评估各个变量在分类中所起的作用

RandomForestRegressor 随机回归树

sklearn.ensemble.RandomForestRegressor

参数

n_estimators:integer, optional (default=100) The number of trees in the forest.森林中树的数量
random_state:int, RandomState instance or None, optional (default=None)
Controls both the randomness of the bootstrapping of the samples used when building trees (if bootstrap=True) and the sampling of the features to consider when looking for the best split at each node (if max_features < n_features)

max_features: RF划分时考虑的最大特征数。可以使用很多种类型的值,默认是"None",意味着划分时考虑所有的特征数;如果是"log2"意味着划分时最多考虑log2N个特征;如果是"sqrt"或者"auto"意味着划分时最多考虑N−−√N个特征。如果是整数,代表考虑的特征绝对数。如果是浮点数,代表考虑特征百分比,即考虑(百分比xN)取整后的特征数,其中N为样本总特征数。一般来说,如果样本特征数不多,比如小于50,我们用默认的"None"就可以了,如果特征数非常多,我们可以灵活使用刚才描述的其他取值来控制划分时考虑的最大特征数,以控制决策树的生成时间。

max_depth: 决策树最大深度。默认为"None",决策树在建立子树的时候不会限制子树的深度这样建树时,会使每一个叶节点只有一个类别,或是达到min_samples_split。一般来说,数据少或者特征少的时候可以不管这个值。如果模型样本量多,特征也多的情况下,推荐限制这个最大深度,具体的取值取决于数据的分布。常用的可以取值10-100之间。
min_samples_split: 内部节点再划分所需最小样本数,默认2。这个值限制了子树继续划分的条件,如果某节点的样本数少于min_samples_split,则不会继续再尝试选择最优特征来进行划分。 默认是2.如果样本量不大,不需要管这个值。如果样本量数量级非常大,则推荐增大这个值。

min_samples_leaf:叶子节点最少样本数。 这个值限制了叶子节点最少的样本数,如果某叶子节点数目小于样本数,则会和兄弟节点一起被剪枝。 默认是1,可以输入最少的样本数的整数,或者最少样本数占样本总数的百分比。如果样本量不大,不需要管这个值。如果样本量数量级非常大,则推荐增大这个值。

min_weight_fraction_leaf:叶子节点最小的样本权重和。这个值限制了叶子节点所有样本权重和的最小值,如果小于这个值,则会和兄弟节点一起被剪枝。 默认是0,就是不考虑权重问题。一般来说,如果我们有较多样本有缺失值,或者分类树样本的分布类别偏差很大,就会引入样本权重,这时我们就要注意这个值了。

max_leaf_nodes: 最大叶子节点数。通过限制最大叶子节点数,可以防止过拟合,默认是"None”,即不限制最大的叶子节点数。如果加了限制,算法会建立在最大叶子节点数内最优的决策树。如果特征不多,可以不考虑这个值,但是如果特征分成多的话,可以加以限制,具体的值可以通过交叉验证得到。

min_impurity_split: 节点划分最小不纯度。这个值限制了决策树的增长,如果某节点的不纯度(基于基尼系数,均方差)小于这个阈值,则该节点不再生成子节点,即为叶子节点 。一般不推荐改动默认值1e-7


# Import RandomForestRegressor
from sklearn.ensemble import RandomForestRegressor

# Instantiate rf
rf = RandomForestRegressor(n_estimators=25,
            random_state=2)
            
# Fit rf to the training set    
rf.fit(X_train ,y_train) 

# Import mean_squared_error as MSE
from sklearn.metrics import mean_squared_error as MSE

# Predict the test set labels
y_pred = rf.predict(X_test)

# Evaluate the test set RMSE
rmse_test = MSE(y_test, y_pred)**(1/2)

# Print rmse_test
print('Test set RMSE of rf: {:.2f}'.format(rmse_test))

<script.py> output:
    Test set RMSE of rf: 51.97

随机分类树

RandomForestClassifier
可以直接查看官方文档
与随机森林回归树是一致

调参实例

# Define the dictionary 'params_rf'
params_rf = {
             'n_estimators': [100, 350, 500],
             'max_features': ['log2', 'auto', 'sqrt'],
             'min_samples_leaf': [2, 10, 30], 
             }
# Import GridSearchCV
from sklearn.model_selection import  GridSearchCV

# Instantiate grid_rf
grid_rf = GridSearchCV(estimator=rf,
                       param_grid=params_rf,
                       scoring='neg_mean_squared_error',
                       cv=3,
                       verbose=1,
                       n_jobs=-1)
# Import mean_squared_error from sklearn.metrics as MSE 
from sklearn.metrics import mean_squared_error as MSE

# Extract the best estimator
best_model = grid_rf.best_estimator_

# Predict test set labels
y_pred = best_model.predict(X_test)

# Compute rmse_test
rmse_test = MSE(y_test, y_pred)**(1/2)

# Print rmse_test
print('Test RMSE of best model: {:.3f}'.format(rmse_test)) 

<script.py> output:
    Test RMSE of best model: 50.569
posted @ 2020-02-22 14:06  高文星星  阅读(566)  评论(0编辑  收藏  举报