无双图求割顶的个数,Tarjan模板。
我这里有两种模板,似乎第一种比较简单。
CODE1:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;
#define MAXN 110
#define MAXM 10010
struct Edge
{
int v, next;
}edge[MAXM];
int first[MAXN];
int dfn[MAXN], low[MAXN];
int sub[MAXN]; //保存的删除该节点之后,图分散变成子图的数量。
int n;
int cnt, tot;
int u, v;
inline void init()
{
cnt = 0;
tot = 0;
memset(first, -1, sizeof(first));
memset(dfn, 0, sizeof(dfn));
memset(sub, 0, sizeof(sub));
}
inline void read_graph(int u, int v)
{
edge[cnt].v = v;
edge[cnt].next = first[u], first[u] = cnt++;
}
inline void read_graph2()
{
while(scanf("%d", &u) && u)
{
while(getchar() != '\n')
{
scanf("%d", &v);
read_graph(u, v);
read_graph(v, u);
}
}
}
void Tarjan(int u) //不直接判断是否为根,而是将root的sub值赋值为0
{
dfn[u] = low[u] = ++tot;
for(int e = first[u]; e != -1; e = edge[e].next)
{
int v = edge[e].v;
if(!dfn[v])
{
Tarjan(v);
low[u] = min(low[u], low[v]);
if(dfn[u] <= low[v]) sub[u]++;
}
low[u] = min(low[u], dfn[v]);
}
}
void solve(int root)
{
int ans = 0;
for(int i = 1; i <= n; i++) sub[i] = (i == root)? 0:1;
Tarjan(root);
for(int i = 1; i <= n; i++)
{
if(sub[i] > 1) ans++; //若大于1,则说明是割顶。
}
printf("%d\n", ans);
}
int main()
{
while(scanf("%d", &n) && n)
{
init();
read_graph2();
solve(1);
}
return 0;
}
#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;
#define MAXN 110
#define MAXM 10010
struct Edge
{
int v, next;
}edge[MAXM];
int first[MAXN];
int dfn[MAXN], low[MAXN];
int sub[MAXN]; //保存的删除该节点之后,图分散变成子图的数量。
int n;
int cnt, tot;
int u, v;
inline void init()
{
cnt = 0;
tot = 0;
memset(first, -1, sizeof(first));
memset(dfn, 0, sizeof(dfn));
memset(sub, 0, sizeof(sub));
}
inline void read_graph(int u, int v)
{
edge[cnt].v = v;
edge[cnt].next = first[u], first[u] = cnt++;
}
inline void read_graph2()
{
while(scanf("%d", &u) && u)
{
while(getchar() != '\n')
{
scanf("%d", &v);
read_graph(u, v);
read_graph(v, u);
}
}
}
void Tarjan(int u) //不直接判断是否为根,而是将root的sub值赋值为0
{
dfn[u] = low[u] = ++tot;
for(int e = first[u]; e != -1; e = edge[e].next)
{
int v = edge[e].v;
if(!dfn[v])
{
Tarjan(v);
low[u] = min(low[u], low[v]);
if(dfn[u] <= low[v]) sub[u]++;
}
low[u] = min(low[u], dfn[v]);
}
}
void solve(int root)
{
int ans = 0;
for(int i = 1; i <= n; i++) sub[i] = (i == root)? 0:1;
Tarjan(root);
for(int i = 1; i <= n; i++)
{
if(sub[i] > 1) ans++; //若大于1,则说明是割顶。
}
printf("%d\n", ans);
}
int main()
{
while(scanf("%d", &n) && n)
{
init();
read_graph2();
solve(1);
}
return 0;
}
CODE2:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;
struct Edge
{
int v, next;
}edge[10001];
int first[101];
int dfn[101], low[101];
int sub[101];
int n;
int cnt, tot, root = 1;
int u, v;
inline void init()
{
cnt = 0;
tot = 0;
memset(first, -1, sizeof(first));
memset(dfn, 0, sizeof(dfn));
}
inline void read_graph(int u, int v)
{
edge[cnt].v = v;
edge[cnt].next = first[u], first[u] = cnt++;
}
inline void read_graph2()
{
while(scanf("%d", &u) && u)
{
while(getchar() != '\n')
{
scanf("%d", &v);
read_graph(u, v);
read_graph(v, u);
}
}
}
void Tarjan(int u, int fa) //处理的时候判断是否为根。
{
int rootson = 0;
low[u] = dfn[u] = ++tot;
for(int e = first[u]; e != -1; e = edge[e].next)
{
int v = edge[e].v;
if(!dfn[v])
{
if(u == root)
{
if(++rootson > 1) sub[u]++;
}
Tarjan(v, u);
low[u] = min(low[u], low[v]);
if(u != root && dfn[u] <= low[v]) sub[u]++;
}
low[u] = min(low[u], dfn[v]);
}
}
void solve()
{
int ans = 0;
for(int i = 1; i <= n; i++) sub[i] = 1;
Tarjan(root, -1);
for(int i = 1; i <= n; i++)
{
if(sub[i] > 1) ans++;
}
printf("%d\n", ans);
}
int main()
{
while(scanf("%d", &n) && n)
{
init();
read_graph2();
solve();
}
return 0;
}
#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;
struct Edge
{
int v, next;
}edge[10001];
int first[101];
int dfn[101], low[101];
int sub[101];
int n;
int cnt, tot, root = 1;
int u, v;
inline void init()
{
cnt = 0;
tot = 0;
memset(first, -1, sizeof(first));
memset(dfn, 0, sizeof(dfn));
}
inline void read_graph(int u, int v)
{
edge[cnt].v = v;
edge[cnt].next = first[u], first[u] = cnt++;
}
inline void read_graph2()
{
while(scanf("%d", &u) && u)
{
while(getchar() != '\n')
{
scanf("%d", &v);
read_graph(u, v);
read_graph(v, u);
}
}
}
void Tarjan(int u, int fa) //处理的时候判断是否为根。
{
int rootson = 0;
low[u] = dfn[u] = ++tot;
for(int e = first[u]; e != -1; e = edge[e].next)
{
int v = edge[e].v;
if(!dfn[v])
{
if(u == root)
{
if(++rootson > 1) sub[u]++;
}
Tarjan(v, u);
low[u] = min(low[u], low[v]);
if(u != root && dfn[u] <= low[v]) sub[u]++;
}
low[u] = min(low[u], dfn[v]);
}
}
void solve()
{
int ans = 0;
for(int i = 1; i <= n; i++) sub[i] = 1;
Tarjan(root, -1);
for(int i = 1; i <= n; i++)
{
if(sub[i] > 1) ans++;
}
printf("%d\n", ans);
}
int main()
{
while(scanf("%d", &n) && n)
{
init();
read_graph2();
solve();
}
return 0;
}
浙公网安备 33010602011771号