Loading

Bag of Tricks for Image Classification with Convolutional Neural Networks

这篇文章来自李沐大神团队,使用各种CNN tricks,将原始的resnet在imagenet上提升了四个点。记录一下,可以用到自己的网络上。如果图片显示不了,点击链接观看

baseline

model: resnet50

transform部分使用pytorch的torchvision接口

train transform:

  1. transforms.RandomResizedCrop(224)
  2. transforms.RandomHorizontalFlip(0.5)
  3. transforms.ColorJitter(brightness=0.4, ntrast=0.4, saturation=0.4)
  4. PCA noise ——— normal distribution N(0, 0.1)
  5. transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

val transform:

  1. transforms.Resize(256)
  2. transforms.CenterCrop(224)

parameters initialized:

conv and lr: Xavier uniformly [-a, a], a = \(\sqrt{6 /\left(d_{i n}+d_{o u t}\right)}\)\(d_{in}\) and \(d_{out}\) are the input and output channel sizes
bn: \(\gamma\) = 1, \(\beta\) = 0

optimizer:NAG
epoch:120
lr: 0.1, divided by 10 every 30 epochs
batchsize: 256

Tricks

Efficient Training

Large batch training

  1. 大的batch减小了梯度的噪声,可以适当放大学习率。论文中调整为0.1 X b/256.
  2. 网络初始的时候,参数离目标很远,较大的学习率会发生数值不稳定,应使用较小的学习线性递增到设置的lr,比如m个batch(5个epoch),初始学习率为n,第i个batch的学习率为i*n/m.
  3. 把每一个resnet block最后一个bn层的\(\gamma\)设置为0
  4. 只有weight decay,没有bias decay

Low precision training

将FP32换成FP16可以不丧失精度使训练更快,技巧是存储所有参数和激活使用FP16来计算梯度。同时,FP32中的所有参数都有一个副本,用于参数更新。

result

efficient是bs1024 + FP16的结果,更快更好。

image-20191206221841655

以下是加上五个变量的实验结果,加入LR warmup和Zero \(\gamma\)效果明显,另外两个作用不是很大。

image-20191206221947992

Model Tweaks

文章对原始的resnet block的下采样层进行了改动,共有三个版本。

以下是原始的resnet结构图:

image-20191207112847701

三个版本对downsample的改动如下:

image-20191207113141725

Resnet-B: 原始的downsample是在conv1x1进行stride为2的下采样,这样会损失3/4的信息,resnet-B则不会。

Resnet-C: 这个调整最早来自于Inception-v2,引入1x1可以减小计算量和参数,作者将前两层的输出通道变为32来达到减小计算量的效果。

Resnet-D: resnet-b的pathB分支还是会损失3/4的信息,通过引入avgpool来改善这种影响。

result

image-20191207114224516

略微提高计算量,Resnet-D版本差不多提高一个点。

Training Refinements

Cosine Learning Rate Decay

将学习率变为余弦函数的曲线,公式如下:

\[\eta_{t}=\frac{1}{2}\left(1+\cos \left(\frac{t \pi}{T}\right)\right) \eta \]

\(n\)是初始学习率,t是第t个batch,T是总batch数,与stepLR的曲线如下所示,开始的直线是LR warmup,可以看到余弦退火精度要高一些:

image-20191207114944793

label smooth:原始的label是one-hot标签,过于苛刻,label smooth将标签进行软化,其他类别也需要有低的概率,变为如下所示的公式,一般\(\varepsilon\)的取值为0.1.

\[q_{i}=\left\{\begin{array}{ll}{1-\varepsilon} & {\text { if } i=y} \\ {\varepsilon /(K-1)} & {\text { otherwise }}\end{array}\right. \]

Knowledge Distillation:知识蒸馏是使用一个老师模型来训练当前模型,帮助当前模型训练的更好,老师模型一般使用精确度更好的预训练模型,文章是使用Resnet152作为老师模型来训练resnet50,通过约束当前模型的softmax输出与老师模型保持一致来提高当前模型。所以损失函数变成下面的形式:

\[\ell(p, \operatorname{softmax}(z))+T^{2} \ell(\operatorname{softmax}(r / T), \operatorname{softmax}(z / T)) \]

Mixup Training:这是一种新式的数据增强策略,随机采样两个样本(可不同类别),进行权重插值(x是图像,y是标签),公式如下:

\[\begin{aligned} \hat{x} &=\lambda x_{i}+(1-\lambda) x_{j} \\ \hat{y} &=\lambda y_{i}+(1-\lambda) y_{j} \end{aligned} \]

\(\lambda\)的范围是0到1,一般采样beta分布。

result

image-20191207120652880

可以看到cosine decay,label smooth和mixup还是很有用的,对模型提高不少,但Knowledge Distillation不同模型效果不同,还得进行实验。

参考

  1. https://arxiv.org/abs/1812.01187
posted @ 2019-12-07 12:20  FANG_YANG  阅读(450)  评论(0编辑  收藏  举报