Classify Text With NLTK

Classification is the task of choosing the correct class label for a given input.

A classifier is called supervised if it is built based on training corpora containing the correct label for each input.

这里就以一个例子来说明怎样用nltk来实现分类器训练和分类

一个简单的分类任务,给定一个名字,判断其性别,就是在male,female两类进行分类

好,先来训练,训练就要有corpus,就是分好类的名字的例子

nltk提供了names的corpus

>>> from nltk.corpus import names

>>> names.words(''male.txt'')  #男性的name的列表

>>> names.words(''female.txt'') #女性的name的列表

有了训练corpus,下面就是特征提取

The first step in creating a classifier is deciding what features of the input are relevant, and how to encode those features.

这里简单的假设这个名字的性别和最后一个字母相关,那么就把最后一个字母作为每个test case的特征

>>> def gender_features(word):
...         return {''last_letter'': word[-1]}
>>> gender_features(''Shrek'')

{''last_letter'': ''k''}

所以就定义如上的特征抽取函数,并用它来生成我们的训练集和测试集

>>> from nltk.corpus import names
>>> import random
>>> names = ([(name, ''male'') for name in names.words(''male.txt'')] +
...         [(name, ''female'') for name in names.words(''female.txt'')])
>>> random.shuffle(names)  #原来的name是按字母排序的,为了达到比较好的训练效果,必须打乱顺序,随机化

>>> featuresets = [(gender_features(n), g) for (n,g) in names]

>>> train_set, test_set = featuresets[500:], featuresets[:500] #把特征集一部分作为train集,一部分用来测试
>>> classifier = nltk.NaiveBayesClassifier.train (train_set) #用训练集来训练bayes分类器

>>> classifier.classify (gender_features(''Trinity'')) #训练完就可以用这个分类器来实际进行分类工作了
''female''

用测试集来测试

>>> print nltk.classify.accuracy (classifier, test_set) #用测试集来测试这个分类器,nltk提供accuracy接口
0.758

现在只考虑了最后一个字母这个特征,准确率是75%,显然还有很大的提升空间。

>>> classifier.show_most_informative_features (5) #这个接口有意思, 你可以显示出区分度最高的几个features
Most Informative Features
last_letter = ''a''     female : male = 38.3 : 1.0
last_letter = ''k''     male : female = 31.4 : 1.0
last_letter = ''f''      male : female = 15.3 : 1.0
last_letter = ''p''     male : female = 10.6 : 1.0
last_letter = ''w''    male : female = 10.6 : 1.0

nltk接口很贴心,还考虑到你内存太小,放不下所有的feature集合,提供这个接口来当用到时,实时的计算feature

>>> from nltk.classify import apply_features 
>>> train_set = apply_features (gender_features, names[500:])
>>> test_set = apply_features(gender_features, names[:500])

分类器分类效果好坏很大取决于训练集的特征选取,特征选取的比较合理,就会取得比较好的分类效果。

当然特征也不是选取的越多越好,

if you provide too many features, then the algorithm will have a higher chance of relying on idiosyncrasies of your training data that don’t generalize well to new examples. This problem is known as overfitting , and can be especially problematic when working with small training sets.

所以特征抽取这个在分类领域中是一个很重要的研究方向。

 

比如把上面那个例子的特征增加为,分别把最后两个字符,作为两个特征, 这样会发现分类器测试的准确性有所提高。

>>> def gender_features(word):
...         return {''suffix1'': word[-1:],
...                      ''suffix2'': word[-2:]}

 

但是如果把特征增加为,首字母,尾字母,并统计每个字符的出现次数,反而会导致overfitting,测试准确性反而不如之前只考虑尾字母的情况

def gender_features2(name):
    features = {}
    features["firstletter"] = name[0].lower()
    features["lastletter"] = name[–1].lower()
    for letter in ''abcdefghijklmnopqrstuvwxyz'':
        features["count(%s)" % letter] = name.lower().count(letter)
        features["has(%s)" % letter] = (letter in name.lower())
    return features
>>> gender_features2(''John'')
{''count(j)'': 1, ''has(d)'': False, ''count(b)'': 0, ...}

>>> featuresets = [(gender_features2(n), g) for (n,g) in names]
>>> train_set, test_set = featuresets[500:], featuresets[:500]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)
>>> print nltk.classify.accuracy(classifier, test_set)
0.748

 

那么上面这个简单的方法已经讲明了用nltk,进行分类的过程,那么剩下的就是针对不同的分类任务,特征的选取上会有不同,还有分类器的也不止bayes一种,可以针对不同的任务来选取。

比如对于文本分类,可以选取是否包含特征词汇作为文本特征

all_words = nltk.FreqDist(w.lower() for w in movie_reviews.words())
word_features = all_words.keys()[:2000] #找出出现频率较高的特征词,虽然这个找法不太合理
def document_features(document):
    document_words = set(document)
    features = {}
    for word in word_features:
        features[''contains(%s)'' % word] = (word in document_words)
    return features
>>> print document_features(movie_reviews.words(''pos/cv957_8737.txt''))
{''contains(waste)'': False, ''contains(lot)'': False, ...}

 

对于pos tagging,我们也可以用分类的方法去解决

比如我们可以通过词的后缀来判断它的词性, 这边就以是否包含常见的词的后缀作为特征

>>> def pos_features(word):
...     features = {}
...     for suffix in common_suffixes:
...         features[''endswith(%s)'' % suffix] = word.lower().endswith(suffix)
...     return features

当然这个特征选取的比较简单,那么改进一下,根据后缀,并考虑context,即前一个词和词性,一起作为特征,这样考虑就比较全面了。后缀之所以要考虑3种情况,是因为一般表示词性的后缀,最多3个字符,s,er,ing

def pos_features(sentence, i, history):
    features = {"suffix(1)": sentence[i][-1:],
                       "suffix(2)": sentence[i][-2:],
                       "suffix(3)": sentence[i][-3:]}
    if i == 0:
        features["prev-word"] = "<START>"
        features["prev-tag"] = "<START>"
    else:
        features["prev-word"] = sentence[i-1]
        features["prev-tag"] = history[i-1] #history里面存放了句子里面每个词的词性
    return features

那么分类器,除了bayes外,nltk还有decision tree, Maximum Entropy classifier就不具体说了

还有对于大规模数据处理, pure python的分类器的效率相对是比较底下的,所以必须用高效的语言如c语言实现的分类器, NLTK也支持这样的分类器的package,可以参考NLTK的web page。



posted on 2011-07-04 20:48  fxjwind  阅读(696)  评论(0编辑  收藏  举报