从零训练一个tokenizer模型
1. 准备训练数据
数据集地址:https://www.modelscope.cn/datasets/gongjy/minimind_dataset/files

2. 准备训练脚本
2.1 初始化tokenizer
定义BPE(Byte-Pair Encoding,字节对编码)模型
# 1. 初始化tokenizer, 定义BPE(Byte-Pair Encoding,字节对编码)模型
tokenizer = Tokenizer(models.BPE())
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False)
2.2 定义特殊token
special_tokens = ["<unk>", "<s>", "</s>"]
2.3 定义训练器并添加特殊token
trainer = trainers.BpeTrainer(
vocab_size=6400,
special_tokens=special_tokens, # 确保这三个token被包含
show_progress=True,
initial_alphabet=pre_tokenizers.ByteLevel.alphabet()
)
2.4 读取文本数据
texts = read_texts_from_jsonl(data_path)
data_path = '/root/data/pretrain/pretrain_hq.jsonl'
2.5 训练tokenizer
tokenizer.train_from_iterator(texts, trainer=trainer)
2.5 设置相关参数
# 6. 设置解码器
tokenizer.decoder = decoders.ByteLevel()
# 7. 检查特殊token的索引
assert tokenizer.token_to_id("<unk>") == 0
assert tokenizer.token_to_id("<s>") == 1
assert tokenizer.token_to_id("</s>") == 2
3. 保存tokenizer模型
tokenizer_dir = "/root/model/tokenizer"
tokenizer.save(os.path.join(tokenizer_dir, "tokenizer.json"))
tokenizer.model.save(tokenizer_dir)
# 保存config文件
config = {
"add_bos_token": False,
"add_eos_token": False,
"add_prefix_space": False,
"added_tokens_decoder": {
"0": {
"content": "<unk>",
"lstrip": False,
"normalized": False,
"rstrip": False,
"single_word": False,
"special": True
},
"1": {
"content": "<s>",
"lstrip": False,
"normalized": False,
"rstrip": False,
"single_word": False,
"special": True
},
"2": {
"content": "</s>",
"lstrip": False,
"normalized": False,
"rstrip": False,
"single_word": False,
"special": True
}
},
"additional_special_tokens": [],
"bos_token": "<s>",
"clean_up_tokenization_spaces": False,
"eos_token": "</s>",
"legacy": True,
"model_max_length": 32768,
"pad_token": "<unk>",
"sp_model_kwargs": {},
"spaces_between_special_tokens": False,
"tokenizer_class": "PreTrainedTokenizerFast",
"unk_token": "<unk>",
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{{ '<s>system\\n' + system_message + '</s>\\n' }}{% else %}{{ '<s>system\\n你是 MiniMind,是一个有用的人工智能助手。</s>\\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<s>user\\n' + content + '</s>\\n<s>assistant\\n' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' + '\\n' }}{% endif %}{% endfor %}"
}
# 保存配置文件
with open(os.path.join(tokenizer_dir, "tokenizer_config.json"), "w", encoding="utf-8") as config_file:
json.dump(config, config_file, ensure_ascii=False, indent=4)

4. 模型验证
# 加载模型
tokenizer = AutoTokenizer.from_pretrained("/root/model/tokenizer")
tokenizer
messages = [
{"role": "system", "content": "你是一个优秀的聊天机器人,总是给我正确的回应!"},
{"role": "user", "content": '你来自哪里?'},
{"role": "assistant", "content": '我来自地球'}
]
new_prompt = tokenizer.apply_chat_template(
messages,
tokenize=False
)
new_prompt
# 获取实际词汇表长度(包括特殊符号)
actual_vocab_size = len(tokenizer)
print('tokenizer实际词表长度:', actual_vocab_size)
model_inputs = tokenizer(new_prompt)
print('encoder长度:', len(model_inputs['input_ids']))
input_ids = model_inputs['input_ids']
response = tokenizer.decode(input_ids, skip_special_tokens=False)
print('decoder和原始文本是否一致:', response == new_prompt)



浙公网安备 33010602011771号