sqlite3.c, 237436行 = 全部源文件,找东西比多文件查找方便多了:-),字符串查找一点都不慢。
不要太害怕,SQLite说它的代码里有非常多是用来做数据完整性检查和测试的。但愿B树,虚数据库引擎之类的不是太长。
/************************************************************************* ** This header file defines the interface that the sqlite B-Tree file ** subsystem. See comments in the source code for a detailed description ** of what each interface routine does. */ #ifndef SQLITE_BTREE_H #define SQLITE_BTREE_H /* TODO: This definition is just included so other modules compile. It ** needs to be revisited. */ #define SQLITE_N_BTREE_META 16 /* ** If defined as non-zero, auto-vacuum is enabled by default. Otherwise ** it must be turned on for each database using "PRAGMA auto_vacuum = 1". */ #ifndef SQLITE_DEFAULT_AUTOVACUUM #define SQLITE_DEFAULT_AUTOVACUUM 0 #endif #define BTREE_AUTOVACUUM_NONE 0 /* Do not do auto-vacuum */ #define BTREE_AUTOVACUUM_FULL 1 /* Do full auto-vacuum */ #define BTREE_AUTOVACUUM_INCR 2 /* Incremental vacuum */ /* ** Forward declarations of structure */ typedef struct Btree Btree; typedef struct BtCursor BtCursor; typedef struct BtShared BtShared; typedef struct BtreePayload BtreePayload; SQLITE_PRIVATE int sqlite3BtreeOpen( sqlite3_vfs *pVfs, /* VFS to use with this b-tree */ const char *zFilename, /* Name of database file to open */ sqlite3 *db, /* Associated database connection */ Btree **ppBtree, /* Return open Btree* here */ int flags, /* Flags */ int vfsFlags /* Flags passed through to VFS open */ ); /* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the ** following values. ** ** NOTE: These values must match the corresponding PAGER_ values in ** pager.h. */ #define BTREE_OMIT_JOURNAL 1 /* Do not create or use a rollback journal */ #define BTREE_MEMORY 2 /* This is an in-memory DB */ #define BTREE_SINGLE 4 /* The file contains at most 1 b-tree */ #define BTREE_UNORDERED 8 /* Use of a hash implementation is OK */ SQLITE_PRIVATE int sqlite3BtreeClose(Btree*); SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int); SQLITE_PRIVATE int sqlite3BtreeSetSpillSize(Btree*,int); #if SQLITE_MAX_MMAP_SIZE>0 SQLITE_PRIVATE int sqlite3BtreeSetMmapLimit(Btree*,sqlite3_int64); #endif SQLITE_PRIVATE int sqlite3BtreeSetPagerFlags(Btree*,unsigned); SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix); SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*); SQLITE_PRIVATE Pgno sqlite3BtreeMaxPageCount(Btree*,Pgno); SQLITE_PRIVATE Pgno sqlite3BtreeLastPage(Btree*); SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree*,int); SQLITE_PRIVATE int sqlite3BtreeGetRequestedReserve(Btree*); SQLITE_PRIVATE int sqlite3BtreeGetReserveNoMutex(Btree *p); SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int); SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *); SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int,int*); SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char*); SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*, int); SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*); SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*,int,int); SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree*,int); SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree*, Pgno*, int flags); SQLITE_PRIVATE int sqlite3BtreeTxnState(Btree*); SQLITE_PRIVATE int sqlite3BtreeIsInBackup(Btree*); SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *, int, void(*)(void *)); SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *pBtree); #ifndef SQLITE_OMIT_SHARED_CACHE SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *pBtree, int iTab, u8 isWriteLock); #endif /* Savepoints are named, nestable SQL transactions mostly implemented */ /* in vdbe.c and pager.c See https://sqlite.org/lang_savepoint.html */ SQLITE_PRIVATE int sqlite3BtreeSavepoint(Btree *, int, int); /* "Checkpoint" only refers to WAL. See https://sqlite.org/wal.html#ckpt */ #ifndef SQLITE_OMIT_WAL SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree*, int, int *, int *); #endif SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *); SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *); SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *, Btree *); SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *); /* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR ** of the flags shown below. ** ** Every SQLite table must have either BTREE_INTKEY or BTREE_BLOBKEY set. ** With BTREE_INTKEY, the table key is a 64-bit integer and arbitrary data ** is stored in the leaves. (BTREE_INTKEY is used for SQL tables.) With ** BTREE_BLOBKEY, the key is an arbitrary BLOB and no content is stored ** anywhere - the key is the content. (BTREE_BLOBKEY is used for SQL ** indices.) */ #define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */ #define BTREE_BLOBKEY 2 /* Table has keys only - no data */ SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree*, int, int*); SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree*, int, i64*); SQLITE_PRIVATE int sqlite3BtreeClearTableOfCursor(BtCursor*); SQLITE_PRIVATE int sqlite3BtreeTripAllCursors(Btree*, int, int); SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *pBtree, int idx, u32 *pValue); SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value); SQLITE_PRIVATE int sqlite3BtreeNewDb(Btree *p); /* ** The second parameter to sqlite3BtreeGetMeta or sqlite3BtreeUpdateMeta ** should be one of the following values. The integer values are assigned ** to constants so that the offset of the corresponding field in an ** SQLite database header may be found using the following formula: ** ** offset = 36 + (idx * 4) ** ** For example, the free-page-count field is located at byte offset 36 of ** the database file header. The incr-vacuum-flag field is located at ** byte offset 64 (== 36+4*7). ** ** The BTREE_DATA_VERSION value is not really a value stored in the header. ** It is a read-only number computed by the pager. But we merge it with ** the header value access routines since its access pattern is the same. ** Call it a "virtual meta value". */ #define BTREE_FREE_PAGE_COUNT 0 #define BTREE_SCHEMA_VERSION 1 #define BTREE_FILE_FORMAT 2 #define BTREE_DEFAULT_CACHE_SIZE 3 #define BTREE_LARGEST_ROOT_PAGE 4 #define BTREE_TEXT_ENCODING 5 #define BTREE_USER_VERSION 6 #define BTREE_INCR_VACUUM 7 #define BTREE_APPLICATION_ID 8 #define BTREE_DATA_VERSION 15 /* A virtual meta-value */ /* ** Kinds of hints that can be passed into the sqlite3BtreeCursorHint() ** interface. ** ** BTREE_HINT_RANGE (arguments: Expr*, Mem*) ** ** The first argument is an Expr* (which is guaranteed to be constant for ** the lifetime of the cursor) that defines constraints on which rows ** might be fetched with this cursor. The Expr* tree may contain ** TK_REGISTER nodes that refer to values stored in the array of registers ** passed as the second parameter. In other words, if Expr.op==TK_REGISTER ** then the value of the node is the value in Mem[pExpr.iTable]. Any ** TK_COLUMN node in the expression tree refers to the Expr.iColumn-th ** column of the b-tree of the cursor. The Expr tree will not contain ** any function calls nor subqueries nor references to b-trees other than ** the cursor being hinted. ** ** The design of the _RANGE hint is aid b-tree implementations that try ** to prefetch content from remote machines - to provide those ** implementations with limits on what needs to be prefetched and thereby ** reduce network bandwidth. ** ** Note that BTREE_HINT_FLAGS with BTREE_BULKLOAD is the only hint used by ** standard SQLite. The other hints are provided for extentions that use ** the SQLite parser and code generator but substitute their own storage ** engine. */ #define BTREE_HINT_RANGE 0 /* Range constraints on queries */ /* ** Values that may be OR'd together to form the argument to the ** BTREE_HINT_FLAGS hint for sqlite3BtreeCursorHint(): ** ** The BTREE_BULKLOAD flag is set on index cursors when the index is going ** to be filled with content that is already in sorted order. ** ** The BTREE_SEEK_EQ flag is set on cursors that will get OP_SeekGE or ** OP_SeekLE opcodes for a range search, but where the range of entries ** selected will all have the same key. In other words, the cursor will ** be used only for equality key searches. ** */ #define BTREE_BULKLOAD 0x00000001 /* Used to full index in sorted order */ #define BTREE_SEEK_EQ 0x00000002 /* EQ seeks only - no range seeks */ /* ** Flags passed as the third argument to sqlite3BtreeCursor(). ** ** For read-only cursors the wrFlag argument is always zero. For read-write ** cursors it may be set to either (BTREE_WRCSR|BTREE_FORDELETE) or just ** (BTREE_WRCSR). If the BTREE_FORDELETE bit is set, then the cursor will ** only be used by SQLite for the following: ** ** * to seek to and then delete specific entries, and/or ** ** * to read values that will be used to create keys that other ** BTREE_FORDELETE cursors will seek to and delete. ** ** The BTREE_FORDELETE flag is an optimization hint. It is not used by ** by this, the native b-tree engine of SQLite, but it is available to ** alternative storage engines that might be substituted in place of this ** b-tree system. For alternative storage engines in which a delete of ** the main table row automatically deletes corresponding index rows, ** the FORDELETE flag hint allows those alternative storage engines to ** skip a lot of work. Namely: FORDELETE cursors may treat all SEEK ** and DELETE operations as no-ops, and any READ operation against a ** FORDELETE cursor may return a null row: 0x01 0x00. */ #define BTREE_WRCSR 0x00000004 /* read-write cursor */ #define BTREE_FORDELETE 0x00000008 /* Cursor is for seek/delete only */ SQLITE_PRIVATE int sqlite3BtreeCursor( Btree*, /* BTree containing table to open */ Pgno iTable, /* Index of root page */ int wrFlag, /* 1 for writing. 0 for read-only */ struct KeyInfo*, /* First argument to compare function */ BtCursor *pCursor /* Space to write cursor structure */ ); SQLITE_PRIVATE BtCursor *sqlite3BtreeFakeValidCursor(void); SQLITE_PRIVATE int sqlite3BtreeCursorSize(void); SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor*); SQLITE_PRIVATE void sqlite3BtreeCursorHintFlags(BtCursor*, unsigned); #ifdef SQLITE_ENABLE_CURSOR_HINTS SQLITE_PRIVATE void sqlite3BtreeCursorHint(BtCursor*, int, ...); #endif SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor*); SQLITE_PRIVATE int sqlite3BtreeTableMoveto( BtCursor*, i64 intKey, int bias, int *pRes ); SQLITE_PRIVATE int sqlite3BtreeIndexMoveto( BtCursor*, UnpackedRecord *pUnKey, int *pRes ); SQLITE_PRIVATE int sqlite3BtreeCursorHasMoved(BtCursor*); SQLITE_PRIVATE int sqlite3BtreeCursorRestore(BtCursor*, int*); SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*, u8 flags); /* Allowed flags for sqlite3BtreeDelete() and sqlite3BtreeInsert() */ #define BTREE_SAVEPOSITION 0x02 /* Leave cursor pointing at NEXT or PREV */ #define BTREE_AUXDELETE 0x04 /* not the primary delete operation */ #define BTREE_APPEND 0x08 /* Insert is likely an append */ #define BTREE_PREFORMAT 0x80 /* Inserted data is a preformated cell */ /* An instance of the BtreePayload object describes the content of a single ** entry in either an index or table btree. ** ** Index btrees (used for indexes and also WITHOUT ROWID tables) contain ** an arbitrary key and no data. These btrees have pKey,nKey set to the ** key and the pData,nData,nZero fields are uninitialized. The aMem,nMem ** fields give an array of Mem objects that are a decomposition of the key. ** The nMem field might be zero, indicating that no decomposition is available. ** ** Table btrees (used for rowid tables) contain an integer rowid used as ** the key and passed in the nKey field. The pKey field is zero. ** pData,nData hold the content of the new entry. nZero extra zero bytes ** are appended to the end of the content when constructing the entry. ** The aMem,nMem fields are uninitialized for table btrees. ** ** Field usage summary: ** ** Table BTrees Index Btrees ** ** pKey always NULL encoded key ** nKey the ROWID length of pKey ** pData data not used ** aMem not used decomposed key value ** nMem not used entries in aMem ** nData length of pData not used ** nZero extra zeros after pData not used ** ** This object is used to pass information into sqlite3BtreeInsert(). The ** same information used to be passed as five separate parameters. But placing ** the information into this object helps to keep the interface more ** organized and understandable, and it also helps the resulting code to ** run a little faster by using fewer registers for parameter passing. */ struct BtreePayload { const void *pKey; /* Key content for indexes. NULL for tables */ sqlite3_int64 nKey; /* Size of pKey for indexes. PRIMARY KEY for tabs */ const void *pData; /* Data for tables. */ sqlite3_value *aMem; /* First of nMem value in the unpacked pKey */ u16 nMem; /* Number of aMem[] value. Might be zero */ int nData; /* Size of pData. 0 if none. */ int nZero; /* Extra zero data appended after pData,nData */ }; SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const BtreePayload *pPayload, int flags, int seekResult); SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes); SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes); SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int flags); SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*); SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int flags); SQLITE_PRIVATE i64 sqlite3BtreeIntegerKey(BtCursor*); SQLITE_PRIVATE void sqlite3BtreeCursorPin(BtCursor*); SQLITE_PRIVATE void sqlite3BtreeCursorUnpin(BtCursor*); #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC SQLITE_PRIVATE i64 sqlite3BtreeOffset(BtCursor*); #endif SQLITE_PRIVATE int sqlite3BtreePayload(BtCursor*, u32 offset, u32 amt, void*); SQLITE_PRIVATE const void *sqlite3BtreePayloadFetch(BtCursor*, u32 *pAmt); SQLITE_PRIVATE u32 sqlite3BtreePayloadSize(BtCursor*); SQLITE_PRIVATE sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor*); SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(sqlite3*,Btree*,Pgno*aRoot,int nRoot,int,int*); SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*); SQLITE_PRIVATE i64 sqlite3BtreeRowCountEst(BtCursor*); #ifndef SQLITE_OMIT_INCRBLOB SQLITE_PRIVATE int sqlite3BtreePayloadChecked(BtCursor*, u32 offset, u32 amt, void*); SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*); SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *); #endif SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *); SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBt, int iVersion); SQLITE_PRIVATE int sqlite3BtreeCursorHasHint(BtCursor*, unsigned int mask); SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *pBt); SQLITE_PRIVATE int sqlite3HeaderSizeBtree(void); #ifdef SQLITE_DEBUG SQLITE_PRIVATE sqlite3_uint64 sqlite3BtreeSeekCount(Btree*); #else # define sqlite3BtreeSeekCount(X) 0 #endif #ifndef NDEBUG SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*); #endif SQLITE_PRIVATE int sqlite3BtreeCursorIsValidNN(BtCursor*); SQLITE_PRIVATE int sqlite3BtreeCount(sqlite3*, BtCursor*, i64*); #ifdef SQLITE_TEST SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int); SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*); #endif #ifndef SQLITE_OMIT_WAL SQLITE_PRIVATE int sqlite3BtreeCheckpoint(Btree*, int, int *, int *); #endif SQLITE_PRIVATE int sqlite3BtreeTransferRow(BtCursor*, BtCursor*, i64); /* ** If we are not using shared cache, then there is no need to ** use mutexes to access the BtShared structures. So make the ** Enter and Leave procedures no-ops. */ #ifndef SQLITE_OMIT_SHARED_CACHE SQLITE_PRIVATE void sqlite3BtreeEnter(Btree*); SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3*); SQLITE_PRIVATE int sqlite3BtreeSharable(Btree*); SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor*); SQLITE_PRIVATE int sqlite3BtreeConnectionCount(Btree*); #else # define sqlite3BtreeEnter(X) # define sqlite3BtreeEnterAll(X) # define sqlite3BtreeSharable(X) 0 # define sqlite3BtreeEnterCursor(X) # define sqlite3BtreeConnectionCount(X) 1 #endif #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE SQLITE_PRIVATE void sqlite3BtreeLeave(Btree*); SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor*); SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3*); #ifndef NDEBUG /* These routines are used inside assert() statements only. */ SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree*); SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3*); SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3*,int,Schema*); #endif #else # define sqlite3BtreeLeave(X) # define sqlite3BtreeLeaveCursor(X) # define sqlite3BtreeLeaveAll(X) # define sqlite3BtreeHoldsMutex(X) 1 # define sqlite3BtreeHoldsAllMutexes(X) 1 # define sqlite3SchemaMutexHeld(X,Y,Z) 1 #endif #endif /* SQLITE_BTREE_H */
1 /* 2 ** This routine does a complete check of the given BTree file. aRoot[] is 3 ** an array of pages numbers were each page number is the root page of 4 ** a table. nRoot is the number of entries in aRoot. 5 ** 6 ** A read-only or read-write transaction must be opened before calling 7 ** this function. 8 ** 9 ** Write the number of error seen in *pnErr. Except for some memory 10 ** allocation errors, an error message held in memory obtained from 11 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is 12 ** returned. If a memory allocation error occurs, NULL is returned. 13 ** 14 ** If the first entry in aRoot[] is 0, that indicates that the list of 15 ** root pages is incomplete. This is a "partial integrity-check". This 16 ** happens when performing an integrity check on a single table. The 17 ** zero is skipped, of course. But in addition, the freelist checks 18 ** and the checks to make sure every page is referenced are also skipped, 19 ** since obviously it is not possible to know which pages are covered by 20 ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist 21 ** checks are still performed. 22 */ 23 SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck( 24 sqlite3 *db, /* Database connection that is running the check */ 25 Btree *p, /* The btree to be checked */ 26 Pgno *aRoot, /* An array of root pages numbers for individual trees */ 27 int nRoot, /* Number of entries in aRoot[] */ 28 int mxErr, /* Stop reporting errors after this many */ 29 int *pnErr /* Write number of errors seen to this variable */ 30 ){ 31 Pgno i; 32 IntegrityCk sCheck; 33 BtShared *pBt = p->pBt; 34 u64 savedDbFlags = pBt->db->flags; 35 char zErr[100]; 36 int bPartial = 0; /* True if not checking all btrees */ 37 int bCkFreelist = 1; /* True to scan the freelist */ 38 VVA_ONLY( int nRef ); 39 assert( nRoot>0 ); 40 41 /* aRoot[0]==0 means this is a partial check */ 42 if( aRoot[0]==0 ){ 43 assert( nRoot>1 ); 44 bPartial = 1; 45 if( aRoot[1]!=1 ) bCkFreelist = 0; 46 } 47 48 sqlite3BtreeEnter(p); 49 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); 50 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); 51 assert( nRef>=0 ); 52 sCheck.db = db; 53 sCheck.pBt = pBt; 54 sCheck.pPager = pBt->pPager; 55 sCheck.nPage = btreePagecount(sCheck.pBt); 56 sCheck.mxErr = mxErr; 57 sCheck.nErr = 0; 58 sCheck.bOomFault = 0; 59 sCheck.zPfx = 0; 60 sCheck.v1 = 0; 61 sCheck.v2 = 0; 62 sCheck.aPgRef = 0; 63 sCheck.heap = 0; 64 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); 65 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; 66 if( sCheck.nPage==0 ){ 67 goto integrity_ck_cleanup; 68 } 69 70 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); 71 if( !sCheck.aPgRef ){ 72 sCheck.bOomFault = 1; 73 goto integrity_ck_cleanup; 74 } 75 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); 76 if( sCheck.heap==0 ){ 77 sCheck.bOomFault = 1; 78 goto integrity_ck_cleanup; 79 } 80 81 i = PENDING_BYTE_PAGE(pBt); 82 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); 83 84 /* Check the integrity of the freelist 85 */ 86 if( bCkFreelist ){ 87 sCheck.zPfx = "Main freelist: "; 88 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), 89 get4byte(&pBt->pPage1->aData[36])); 90 sCheck.zPfx = 0; 91 } 92 93 /* Check all the tables. 94 */ 95 #ifndef SQLITE_OMIT_AUTOVACUUM 96 if( !bPartial ){ 97 if( pBt->autoVacuum ){ 98 Pgno mx = 0; 99 Pgno mxInHdr; 100 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i]; 101 mxInHdr = get4byte(&pBt->pPage1->aData[52]); 102 if( mx!=mxInHdr ){ 103 checkAppendMsg(&sCheck, 104 "max rootpage (%d) disagrees with header (%d)", 105 mx, mxInHdr 106 ); 107 } 108 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){ 109 checkAppendMsg(&sCheck, 110 "incremental_vacuum enabled with a max rootpage of zero" 111 ); 112 } 113 } 114 #endif 115 testcase( pBt->db->flags & SQLITE_CellSizeCk ); 116 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk; 117 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ 118 i64 notUsed; 119 if( aRoot[i]==0 ) continue; 120 #ifndef SQLITE_OMIT_AUTOVACUUM 121 if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){ 122 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); 123 } 124 #endif 125 checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); 126 } 127 pBt->db->flags = savedDbFlags; 128 129 /* Make sure every page in the file is referenced 130 */ 131 if( !bPartial ){ 132 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ 133 #ifdef SQLITE_OMIT_AUTOVACUUM 134 if( getPageReferenced(&sCheck, i)==0 ){ 135 checkAppendMsg(&sCheck, "Page %d is never used", i); 136 } 137 #else 138 /* If the database supports auto-vacuum, make sure no tables contain 139 ** references to pointer-map pages. 140 */ 141 if( getPageReferenced(&sCheck, i)==0 && 142 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ 143 checkAppendMsg(&sCheck, "Page %d is never used", i); 144 } 145 if( getPageReferenced(&sCheck, i)!=0 && 146 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ 147 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); 148 } 149 #endif 150 } 151 } 152 153 /* Clean up and report errors. 154 */ 155 integrity_ck_cleanup: 156 sqlite3PageFree(sCheck.heap); 157 sqlite3_free(sCheck.aPgRef); 158 if( sCheck.bOomFault ){ 159 sqlite3_str_reset(&sCheck.errMsg); 160 sCheck.nErr++; 161 } 162 *pnErr = sCheck.nErr; 163 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg); 164 /* Make sure this analysis did not leave any unref() pages. */ 165 assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); 166 sqlite3BtreeLeave(p); 167 return sqlite3StrAccumFinish(&sCheck.errMsg); 168 }
浙公网安备 33010602011771号