TensorBoard的使用
1.TensorBoard的使用
1.1 安装TensorBoard
pip install tensorboard
命令行输入 tensorboard --logdir=logs #logdir = 事件文件所在文件夹名
出现 TensorBoard 2.11.2 at http://localhost:6006/ (Press CTRL+C to quit)
tensorboard --logdir=logs --port=6007 #修改端口,防止端口被占用
1.2 add_scalar()方法
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs")
# writer.add_image()
for i in range(100):
writer.add_scalar("y=x",i,i)
writer.close()
运行完之后,会生成tensorboard文件夹,在命令行输入tensorboard --logdir=logs时,此时目录应该在logs的上级目录。
1.3 add_image()的使用
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs")
writer.add_image()
1.4 利用numpy.array(),对PIL图片进行转换

1.5 小练习
创建一个简单的pytorch模型
import torch
import torch.nn as nn
import numpy as np
from torch.utils.tensorboard import SummaryWriter
# 定义模型
class LinearRegressionModel(nn.Module):
def __init__(self):
super(LinearRegressionModel, self).__init__()
self.linear = nn.Linear(1, 1) # 输入和输出都是1维
def forward(self, x):
return self.linear(x)
# 准备数据
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168],
[9.779], [6.182], [7.59], [2.167],
[7.042], [10.791], [5.313], [7.997], [3.1]], dtype=np.float32)
y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573],
[3.366], [2.596], [2.53], [1.221],
[2.827], [3.465], [1.65], [2.904], [1.3]], dtype=np.float32)
x_train = torch.from_numpy(x_train)
y_train = torch.from_numpy(y_train)
# 初始化模型
model = LinearRegressionModel()
# 损失和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# 初始化SummaryWriter
writer = SummaryWriter('runs/linear_regression_experiment')
# 训练模型
num_epochs = 100
for epoch in range(num_epochs):
# 转换为tensor
inputs = x_train
targets = y_train
# 前向传播
outputs = model(inputs)
loss = criterion(outputs, targets)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 记录损失
writer.add_scalar('Loss/train', loss.item(), epoch)
if (epoch + 1) % 10 == 0:
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
# 关闭SummaryWriter
writer.close()
观察结果,如图所示:


浙公网安备 33010602011771号