解题:Remote Sensing Digital Image Analysis ,The Taylor Method of Contrast Enhancement,PCA主成分分析主成分匹配对比度增强
原理:主成分拉伸,(使主成分上的数据方差相等,进行高斯直方图匹配,再投影到原坐标)


题目:(操作比较渣,就用matlab+excel捯饬出的)
涉及函数
cova = cov(A) %求矩阵A的协方差矩阵,A的行表示样品,列表示特征
[coeff,latent,explained] = pcacov(cova) %已知协方差矩阵cova,求特征向量coeff,特征值latent,特征值(主成分)所占方差比例explained
[V,D] = eig(cova) %求协方差矩阵cova的特征向量V和特征值D
6.11
Perform a principal components transformation of the data shown in Fig. 4.21 and then produce a simple linear contrast stretch on each of the components separately. Compare the result to that from Prob. 4.3.

covA=
1.5088 1.1452
1.1452 1.3247
EVectors=
0.7349 -0.6782
0.6782 0.7349
EValues =
[2.5657 0.2678]
CPercentage =
90.5482
9.4518
Matlab 计算两个主成分的亮度范围(原坐标轴范围1~10)
>>comp1Range = [1 1; 10 10]*[0.7349; 0.6782]
comp1Range =
1.4131
14.1310
Comp1Mean = 7.77205
>> comp2Range = [10 1; 1 10]*[-0.6782;0.7349]
Comp2Range =
-6.0471
6.6708
Comp2Mean = 0.31185
高斯直方图匹配,假设匹配亮度至太分布三个标准差范围占99.73%,则根据
距离均值三个标准差的正态分布的分位数分别为-2.99,2.99
设图像的最大值为Xmax,最小值为Xmin,均值mean = (Xmax+Xmin)/2
因为Ф((Xmax-mean)/sd)= Ф(2.99)
算得两个主成分的方差为2.13
主成分变换
|
x |
y |
c1 |
c2 |
像素数 |
|
3 |
3 |
4.2393 |
0.1701 |
1 |
|
3 |
4 |
4.9175 |
0.905 |
2 |
|
4 |
3 |
4.9742 |
-0.5081 |
1 |
|
4 |
4 |
5.6524 |
0.2268 |
5 |
|
4 |
5 |
6.3306 |
0.9617 |
4 |
|
5 |
4 |
6.3873 |
-0.4514 |
3 |
|
5 |
5 |
7.0655 |
0.2835 |
8 |
|
5 |
6 |
7.7437 |
1.0184 |
3 |
|
6 |
5 |
7.8004 |
-0.3947 |
5 |
|
6 |
6 |
8.4786 |
0.3402 |
6 |
|
6 |
7 |
9.1568 |
1.0751 |
2 |
|
7 |
6 |
9.2135 |
-0.338 |
3 |
|
7 |
7 |
9.8917 |
0.3969 |
1 |
|
7 |
8 |
10.5699 |
1.1318 |
1 |
|
8 |
7 |
10.6266 |
-0.2813 |
1 |
|
8 |
8 |
11.3048 |
0.4536 |
1 |
直方图匹配方法

第一主成分直方图匹配,用到excel统计函数NORM.INV
|
次序 |
c1 |
像素数 |
累加 |
占比 |
正太分布分位数 |
|
1 |
4.2393 |
1 |
1 |
0.021276596 |
3.452262721 |
|
2 |
4.9175 |
2 |
3 |
0.063829787 |
4.527215773 |
|
3 |
4.9742 |
1 |
4 |
0.085106383 |
4.850711393 |
|
4 |
5.6524 |
5 |
9 |
0.191489362 |
5.913793173 |
|
5 |
6.3306 |
4 |
13 |
0.276595745 |
6.5089929 |
|
6 |
6.3873 |
3 |
16 |
0.340425532 |
6.895976625 |
|
7 |
7.0655 |
8 |
24 |
0.510638298 |
7.828855863 |
|
8 |
7.7437 |
3 |
27 |
0.574468085 |
8.171981418 |
|
9 |
7.8004 |
5 |
32 |
0.680851064 |
8.773320371 |
|
10 |
8.4786 |
6 |
38 |
0.808510638 |
9.630306827 |
|
11 |
9.1568 |
2 |
40 |
0.85106383 |
9.989394722 |
|
12 |
9.2135 |
3 |
43 |
0.914893617 |
10.69338861 |
|
13 |
9.8917 |
1 |
44 |
0.936170213 |
11.01688423 |
|
14 |
10.5699 |
1 |
45 |
0.957446809 |
11.43947661 |
|
15 |
10.6266 |
1 |
46 |
0.978723404 |
12.09183728 |
|
16 |
11.3048 |
1 |
47 |
1 |
#NUM! |
第二主成分直方图匹配
|
次序 |
c2 |
像素数 |
累加 |
占比 |
正态分布分位数 |
|
3 |
-0.5081 |
1 |
1 |
0.021276596 |
-4.007937279 |
|
6 |
-0.4514 |
3 |
4 |
0.085106383 |
-2.609488607 |
|
9 |
-0.3947 |
5 |
9 |
0.191489362 |
-1.546406827 |
|
12 |
-0.338 |
3 |
12 |
0.255319149 |
-1.089357985 |
|
15 |
-0.2813 |
1 |
13 |
0.276595745 |
-0.9512071 |
|
1 |
0.1701 |
1 |
14 |
0.29787234 |
-0.818178389 |
|
4 |
0.2268 |
5 |
19 |
0.404255319 |
-0.204350924 |
|
7 |
0.2835 |
8 |
27 |
0.574468085 |
0.711781418 |
|
10 |
0.3402 |
6 |
33 |
0.70212766 |
1.441878389 |
|
13 |
0.3969 |
1 |
34 |
0.723404255 |
1.5749071 |
|
16 |
0.4536 |
1 |
35 |
0.744680851 |
1.713057985 |
|
2 |
0.905 |
2 |
37 |
0.787234043 |
2.009163374 |
|
5 |
0.9617 |
4 |
41 |
0.872340426 |
2.734776877 |
|
8 |
1.0184 |
3 |
44 |
0.936170213 |
3.556684227 |
|
11 |
1.0751 |
2 |
46 |
0.978723404 |
4.631637279 |
|
14 |
1.1318 |
1 |
47 |
1 |
#NUM! |
这里我将#NUM!分别赋予主成分范围的最大值(也不知道可行不可行)
|
拉伸后数据 |
投影至原坐标轴 |
取整 |
像素数 |
|||
|
c1' |
c2' |
x' |
y' |
x |
y |
|
|
3.4523 |
0.8182 |
3.0920 |
1.7400 |
3 |
2 |
1 |
|
4.5272 |
2.0092 |
1.9644 |
4.5469 |
2 |
5 |
2 |
|
4.8507 |
4.0079 |
6.2830 |
0.3443 |
6 |
1 |
1 |
|
5.9138 |
0.2044 |
4.4846 |
3.8606 |
4 |
4 |
5 |
|
6.5090 |
2.7348 |
2.9287 |
6.4242 |
3 |
7 |
4 |
|
6.8960 |
2.6095 |
6.8376 |
2.7591 |
7 |
3 |
3 |
|
7.8289 |
0.7118 |
5.2707 |
5.8326 |
5 |
6 |
8 |
|
8.1720 |
3.5567 |
3.5934 |
8.1560 |
4 |
8 |
3 |
|
8.7733 |
1.5464 |
7.4963 |
4.8136 |
7 |
5 |
5 |
|
9.6303 |
1.4419 |
6.0994 |
7.5909 |
6 |
8 |
6 |
|
9.9894 |
4.6316 |
4.2000 |
10.1786 |
4 |
10 |
2 |
|
10.6934 |
1.0894 |
8.5974 |
6.4517 |
9 |
6 |
3 |
|
11.0169 |
1.5749 |
7.0282 |
8.6291 |
7 |
9 |
1 |
|
11.4395 |
6.6708 |
3.8827 |
12.6606 |
4 |
10 |
1 |
|
12.0918 |
0.9512 |
9.5314 |
7.5016 |
10 |
8 |
1 |
|
14.1310 |
1.7131 |
9.2231 |
10.8426 |
9 |
10 |
1 |
|
10 |
|
|
|
3 |
|
|
|
|
1 |
|
|
9 |
|
|
|
|
|
|
1 |
|
|
|
|
8 |
|
|
|
3 |
|
6 |
|
|
|
1 |
|
7 |
|
|
4 |
|
|
|
|
|
|
|
|
6 |
|
|
|
|
8 |
|
|
|
3 |
|
|
5 |
|
2 |
|
|
|
|
5 |
|
|
|
|
4 |
|
|
|
5 |
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
3 |
|
|
|
|
2 |
|
|
1 |
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
1 |
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
浙公网安备 33010602011771号