人工智能安全相关整理
根据方滨兴院士的《人工智能安全》的体系观念与引用进行的整理,该部分为原博客整理备份。
基础相关
理论相关
- ImageNet Classification with Deep Convolutional Neural Networks
- Distributed Representations of Words and Phrases and their Compositionality
- Generative Adversarial Nets*
- Adam: Method for Stochastic Optimization
- Deep Residual Learning for Image Recognition
- Attention Is All You Need*
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
- A Style-Based Generator Architecture for Generative Adversarial Networks*
- Analyzing and Improving the Image Quality of StyleGAN*
- Reinforcement learning: An introduction
- Human-level control through deep reinforcement learning
- Mastering the game of Go with deep neural networks and tree search
- Hybrid computing using a neural network with dynamic external memory
- Domain Adaptation via Transfer Component Analysis
- Communication-efficient learning of deep networks from decentralized data
- Parallelized Stochastic Gradient Descent
- Large scale distributed deep networks
- Deep learning with COTS HPC system
- Representation Learning: A Review and New Perspectives
- Learning to learn
- Autolearn--Automated feature generation and selection
- An explainable artificial intelligence system for small-unit tactical behavior
- Explainable artificial intelligence(XAI)
- Neural image caption generation with visual attention
- Neural module networks
- Network dissection: Quantifying interpretability of deep visual representations
- Large scale GAN training for high fidelity natural image synhesis
- Video-to-video synthesis
- Classification with Quantum Neural Networks on Near Term Processors
- Meta-Learning a Dynamical Language Model
- Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
- LSTM neural networks for language modeling
- Towards end-to-end speech recognition with recurrent neural networks
- Hybrid speech recognition with deep bidirectional LSTM
- Brain Emotional Learning Based Intelligent Controller
框架相关
训练框架:
- Tensorflow:轻松构建、直接具体应用、研究实验
- MXNet:开源、灵活、支持分布式训练、
- Caffe2:PyTorch脚本、分布式训练、丰富的工具和库、支持云开发
- CNTK:微软的
- 飞桨:百度的
推断框架:Tensorflow Lite、NCNN、Core ML、Paddle-Mobile、TensorRT
适配:
- 中间表示层可移植问题:NNVM/TVM、XLA
- 模型转换与格式交换:TFRecord、ONNX、NNEF
- 深度学习编译器解决适应性问题:CUDA、nGraph
强化学习:Google Dopamine
分布式机器学习:LightLDA、MoE、Distbelief
元学习:Google AutoML、Auto-Keras、MetaQNN、Weight Agnostic Neural Networks
人工智能助力安全
安全挑战相关
- The New Frontiers of CyberSecurity
人工智能助力安全防御相关
- AI2:Training a Big Data Machine to Defend
- Generative Adversarial Networks for Distributed Intrusion Detection in the Internet of Things*
- Detecting Malicious PowerShell Commands using Deep Neural Networks
- ATT&CK Matrix for Enterprise
- How machine learning in G Suite makes people more productive
- Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables
- DeepLocker: How AI Can Power a Stealthy New Breed of Malware
- VulDeePecker: A Deep Learning-Based System for Vulnerability Detection
- Coverage-based greybox fuzzing as markov chain
- Directed greybox fuzzing
AI+Blockchain: Audit Trail、AI DAO
人工智能助力安全攻击相关
- Another Text Captcha Slover: A Generative Adversarial Network Based Approach
- Automatic Machine Learning Penetration Test Tool: Deep Exploit
- Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN*
- Face2Face: Real-Time Face Capture and Reenactment of RGB Videos*
- Everybody dance now
- Talking face generation by adversarially disentangled audio-visual representation
- DeepLocker - Concealing Targeted Attacks with AI locksmithing
- Attacking and defending with intelligent botnets
- Trojaning attack on neural networks
- Automatically evading classifiers*
- Evading classifiers b morphing in the dark*
- Generating Adeversarial Malware Examples for Black-Box Attacks Based on GAN*
- Learning to Evade Static PE Machine Learning Malware Models via Reinforcement Learning
- A deep learning approach for password guessing
- DeepmasterPrint: Fingerprint Spoofing via Latent Variable Evolution
- The malicious use of artificial intelligence: Forecasting, prevention, and mitigation
- Automated crowdturfing attacks and defenses in online review system
漏洞挖掘:Mayhem、VulDeePecker、AFLFast、AFLGo
身份认证:PassGAN、DeepMasterPrints
内容安全:Perspective
Deepfake类:FaceSwap、FakeApp、Deepfacelab、ZAO
人工智能内生安全
数据安全相关
- Intriguing properties of neural networks
- Explaining and Harnessing Adversarial Examples
- Adversarial machine learning at scale
- Adversarial examples in physical world
- DeepFool: simple and accurate method to fool deep neural networks
- The Limitations of Deep learning in Adversarial Settings
- One pixel attack for fooling deep neural networks
- UPSET and ANGRI: reaking High Performance Image Classifiers
- Audio Adversarial Examples: Targeted Attacks on Speech-to-Text*
- Transferable Adversarial Attacks for Image and Video Object Detection
- Poison Frogs!Targeted Poisoning Attack on Neural Networks
白盒攻击:FGSM、BIM、ILCM、DeepFool、JSMA
黑盒攻击:One Pixel Attack、UPSET
框架安全
CVE:2018-9635、2018-10055、2017-9782、2017-12599等
算法安全
对抗样本体现出人工智能算法缺乏可解释性
模型安全
模型存储和管理的安全、开源模型被攻击篡改的安全问题
- Stealing Machine Learning Models via Prediction APIs
运行安全
客观原因造成的安全问题和主观原因造成的安全问题
- TBT: Targeted Neural Network Network Attack with Bit Trojan
保险箍
在驱动装置和决策系统之间的保险箍,以保证决策的安全性
人工智能衍生安全
自动驾驶汽车失效、人工智能武器、人对技术的安全忧虑、人工智能行为体(AIA)失控三要素。
根据总结:行为能力与破坏力、不可解释的决策能力、进化能力与自主系统
相关预防举措:人机协作国际规范、阿西洛马人工智能原则、自我终结机制
人工智能行为体的安全评估与检测
安全管理
最小风险设计、采用安全装置、采用告警装置
相关标准:机器人安全总则和指导规范
安全评估
动能安全:对AIA的动能评估,包括机械性能、电气性能、辐射性能、化学性质、生物性质几方面
决策安全:对决策系统的安全评估,控制能力、决策单调性、决策依赖的可控性、决策系统的脆弱性、决策系统的进化评估
自主安全:对AIA自主能力失控风险的评估,服从性意识评估、确认性意识评估、自我保护意识评估、社交能力评估、协同组织能力评估
方法与指标
动能安全
评估方法:安全回路组件评估、整体行为评估
评估指标:安全完整性、性能等级
决策安全
评估方法:黑盒与白盒不同场景下,差分测试评估、变异测试评估
评估指标:决策结果是否符合预期
自主安全
评估方法:图灵测试+是否有摆脱人类控制的意识
评估指标:判断是否出现失控可能
检测能力与检测方法
针对动能的检测:安全控制方面的功能是否健全、是否会出现失控
针对决策的检测:留出法、交叉验证、自助法,还有其他方面的检测包括算法稳定性、系统测试、接口测试
针对自主的检测:使用保险箍
人工智能伦理安全
这一块不是技术性的安全,属于交叉领域的安全讨论了。

浙公网安备 33010602011771号