除自身以外数组的乘积-leetcode

题目描述

给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。

题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。

不要使用除法,且在 O(n) 时间复杂度内完成此题。

示例 1:

输入: nums = [1,2,3,4]
输出: [24,12,8,6]

示例 2:

输入: nums = [-1,1,0,-3,3]
输出: [0,0,9,0,0]

提示:

  • 2 <= nums.length <= 105
  • -30 <= nums[i] <= 30
  • 输入 保证 数组 answer[i]32 位 整数范围内

进阶:你可以在 O(1) 的额外空间复杂度内完成这个题目吗?( 出于对空间复杂度分析的目的,输出数组 不被视为 额外空间。)

解法一

思路:

利用前缀乘积和后缀乘积的方法进行求解,例如L[i]i的左侧所有数乘积,R[i]i的右侧所有数乘积,那么对于answer[i]则为L[i-1]*R[i+1],同时L数组计算时间复杂度为O(n),从左向右遍历,R数组也是同理。

代码:

class Solution {
    public int[] productExceptSelf(int[] nums) {
        int numsLen=nums.length;
        int[] res=new int[numsLen];
        //前缀和后缀乘积
        int[] prefix=new int[numsLen+2];
        int[] suffix=new int[numsLen+2];
        Arrays.fill(prefix,1);
        Arrays.fill(suffix,1);
        for(int i=1;i<=numsLen;i++){
            suffix[i]=nums[i-1]*suffix[i-1];
        }
        for(int i=numsLen;i>0;i--){
            prefix[i]=nums[i-1]*prefix[i+1];
        }

        for(int i=1;i<=numsLen;i++){
            res[i-1]=prefix[i+1]*suffix[i-1];
        }

        return res;
    }
}

解法二

思路:

来自官方解答。尽管上面的方法已经能够很好的解决这个问题,但是空间复杂度并不为常数。

由于输出数组不算在空间复杂度内,那么我们可以将 L 或 R 数组用输出数组来计算。先把输出数组当作 L 数组来计算,然后再动态构造 R 数组得到结果。让我们来看看基于这个思想的算法。

步骤:

  • 初始化 answer 数组,对于给定索引 i,answer[i] 代表的是 i 左侧所有数字的乘积。
  • 构造方式与之前相同,只是我们试图节省空间,先把 answer 作为方法一的 L 数组。
  • 这种方法的唯一变化就是我们没有构造 R 数组。而是用一个遍历来跟踪右边元素的乘积。并更新数组 answer[i]=answer[i]∗R。然后 R 更新为 R=R∗nums[i],其中变量 R 表示的就是索引右侧数字的乘积

代码:

class Solution {
    public int[] productExceptSelf(int[] nums) {
        int length = nums.length;
        int[] answer = new int[length];

        // answer[i] 表示索引 i 左侧所有元素的乘积
        // 因为索引为 '0' 的元素左侧没有元素, 所以 answer[0] = 1
        answer[0] = 1;
        for (int i = 1; i < length; i++) {
            answer[i] = nums[i - 1] * answer[i - 1];
        }

        // R 为右侧所有元素的乘积
        // 刚开始右边没有元素,所以 R = 1
        int R = 1;
        for (int i = length - 1; i >= 0; i--) {
            // 对于索引 i,左边的乘积为 answer[i],右边的乘积为 R
            answer[i] = answer[i] * R;
            // R 需要包含右边所有的乘积,所以计算下一个结果时需要将当前值乘到 R 上
            R *= nums[i];
        }
        return answer;
    }
}
posted @ 2025-09-18 20:55  狐狸胡兔  阅读(12)  评论(0)    收藏  举报