$20200203$的数学作业

典型例题

1.

证明:

由题可知\(A(-2, 0)\)

\(D(x_0, y_0)\ (x_0 \neq \pm 2)\),则\(E(-x_0, -y_0)\),且\(\frac{x_0^2}{4} + y_0^2 = 1\)

则由题有\(AD: y = \frac{y_0}{x_0 + 2} (x + 2) \Rightarrow M(0, \frac{2y_0}{x_0 + 2})\)

同理\(AE: y = \frac{y_0}{x_0 - 2} (x + 2) \Rightarrow M(0, \frac{2y_0}{x_0 - 2})\)

设以\(MN\)为直径的圆与\(x\)轴交于\(P(x', 0)\)\(Q(-x', 0)\),不妨令\(x' > 0\)

那么\(\vec{PM} = (-x', \frac{2y_0}{x_0 + 2})\)\(\vec{PN} = (-x', \frac{2y_0}{x_0 - 2})\)

\(\vec{PM} \cdot \vec{PN} = x'^2 + \frac{4y_0^2}{x_0^2 - 4} = 0\)

代入\(\frac{x_0^2}{4} + y_0^2 = 1\),整理可得\(x' = 1\) \(\Rightarrow\)\(\lvert PQ \rvert = 2\)

即以\(MN\)为直径的圆被\(x\)轴截的的弦长恒为定值\(2\)

\(\blacksquare\)


2.

解:

\(M(x_1, y_1)\)\(N(x_2, y_2)\)

I\(k = 0\)

由题易知\(m \in (-\sqrt{3}, \sqrt{3})\)

II\(k \neq 0\) \(\Rightarrow l: y = -\frac{1}{k} x - \frac{1}{2}\)

\(y = kx + m\)代入椭圆方程,整理得

\[(4k^2 + 3)x^2 + 8kmx + 4m^2 - 12 = 0 \]

其中

\[\begin{aligned} \Delta & = (8km)^2 - 4(4k^2 + 3)(4m^2 - 12) \\ & = 48(4k^2 - m^2 + 3) > 0 \Rightarrow 4k^2 + 3 > m^2 \end{aligned} \]

由韦达定理,

\[\begin{cases} \begin{aligned} & x_1 + x_2 = -\frac{8km}{4k^2 + 3} \\ & x_1x_2 = \frac{4m^2 - 12}{4k^2 + 3} \end{aligned} \end{cases} \]

\(MN\)的中点为\(P\),则\(P(-\frac{4km}{4k^2 + 3}, \frac{3m}{4k^2 + 3})\),故有

\[\frac{3m}{4k^2 + 3} = \frac{4m}{4k^2 + 3} - \frac{1}{2} \]

整理得\(4k^2 + 3 = 2m\) \(\Rightarrow\) \(2m > m^2\) \(\Rightarrow\) \(0 < m < 2\)

上述方程又可化为\(2m - 3 = 4k^2 > 0\) \(\Rightarrow\) \(m > \frac{3}{2}\) \(\Rightarrow\) \(\frac{3}{2} < m < 2\)

此时,若\(y = kx + m\)过左顶点 \(\Rightarrow\) \(m = 2k\) \(\Rightarrow\) \((2k^2 - 1)^2 = -2\) \(\Rightarrow\) 无解

\(y = kx + m\)不过左顶点,由对称性可得其不过右顶点

即此时\(m \in (\frac{3}{2}, 2)\)

综上所述,\(m \in (-\sqrt{3}, 2)\)

课堂练习

1.

解:

由题可知\(P(0, 2) \Rightarrow M(0, 1)\)

\(A(x_1, y_1)\)\(B(x_2, y_2)\)

I\(l\)的斜率存在

\(l: y = kx + 1\),代入椭圆方程,整理得

\[(2k^2 + 1)x^2 + 4kx - 6 = 0 \]

其中

\[\begin{aligned} \Delta & = (4k)^2 - 4(2k^2 + 1) \cdot (-6) \\ & = 8(8k^2 + 3) > 0 \end{aligned} \]

由几何关系易知

\[\begin{aligned} k_{AC} + k_{BC} & = 0 \\ \frac{y_1}{x_1 + 3} + \frac{y_2}{x_2 + 3} & = 0 \\ 2kx_1x_2 + (3k + 1)(x_1 + x_2) + 6 = 0 \end{aligned} \]

由韦达定理,

\[\begin{cases} \begin{aligned} & x_1 + x_2 = -\frac{4k}{2k^2 + 1} \\ & x_1x_2 = -\frac{6}{2k^2 + 1} \end{aligned} \end{cases} \]

代入,整理得\(k = \frac{3}{8}\) \(\Rightarrow\) \(l: 3x - 8y + 8 = 0\)

II\(l\)斜率不存在

此时显然满足\(\Rightarrow l: x = 0\)

综上所述,\(l: 3x - 8y + 8 = 0\)\(l: x = 0\)


2.

证明:

由几何关系易知\(PA \perp PB\)

I\(PA \perp x\)

此时\(PA: x = 3\)\(PA: x = -3\) \(\Rightarrow\) \(PB: y = 2\)\(PB: y = -2\)

易知\(PB\)\(C\)相切

II\(PA \perp y\)

I易知此时\(PB\)\(C\)相切

III\(PA\)\(x\)轴和\(y\)均不垂直

\(P(x_0, y_0)\)\(PA: y - y_0 = k(x - x_0)\),则\(PB: y - y_0 = -\frac{1}{k} (x - x_0)\)

\(PA\)代入\(C\),整理得

\[(9k^2 + 4)x^2 + 18k(y_0 - kx_0)x + 9(y_0 - kx_0)^2 - 36 = 0 \]

\(PA\)\(C\)相切\(\Rightarrow\)\(\Delta_1 = [18k(y_0 - kx_0)]^2 - 4(9k^2 + 4)[9(y_0 - kx_0)^2 - 36] = 0\) \(\Rightarrow\) \((x_0^2 - 9)k^2 + 2x_0y_0k + y_0^2 - 4 = 0\)

\(PB\)代入\(C\),整理求得\(\Delta_2 = \frac{x_0^2 - 9}{k^2} + \frac{2x_0y_0}{k} + y_0^2 - 4\)

\(x_0^2 + y_0^2 = 13\) \(\Rightarrow\) \(\Delta_2 = -\frac{144[(x_0^2 - 9)k^2 + 2x_0y_0k + y_0^2 - 4]}{k^2} = 0\)

故此时\(PB\)\(C\)相切

综上所述,直线\(PB\)与椭圆\(C\)相切

\(\blacksquare\)

课后作业

1.

解:

\(\Delta ABC\)为正三角形,则\(AB \perp OC\)\(\sqrt{3} \lvert OA \rvert = \lvert OC \rvert\)

由几何关系易知\(AB\)的斜率存在且不为\(0\)

故可设\(AB: y = kx\),则\(OC: y = -\frac{1}{k} x\)

\(AB\)代入\(\Gamma\),整理可得

\[\begin{cases} \begin{aligned} & x^2 = \frac{30}{5k^2 + 3} \\ & y^2 = \frac{30k^2}{5k^2 + 3} \end{aligned} \end{cases} \]

\(\lvert OA \rvert = \sqrt{x^2 + y^2} = \sqrt{\frac{30(k^2 + 1)}{5k^2 + 3}}\),同理\(\lvert OC \rvert = \sqrt{\frac{30(k^2 + 1)}{3k^2 + 5}}\)

\(\sqrt{3} \lvert OA \rvert = \lvert OC \rvert\)

代入整理得\(k^2 = -3\) \(\Rightarrow\) 无实数解

\(\Delta ABC\)不可能为正三角形


2.

解:

由题,\(C(1, 0)\)\(E(-m, n)\)

\(CD: y = \frac{n}{m - 1} (x - 1)\) \(\Rightarrow\) \(M(0, \frac{n}{1 - m})\)\(CE: y = -\frac{n}{m + 1} (x - 1)\) \(\Rightarrow\) \(N(0, \frac{n}{1 + m})\)

\(Q(t, 0)\),则\(\tan \angle OQM = \lvert \frac{n}{(m - 1)t} \rvert\)\(\tan \angle ONQ = \lvert \frac{(m + 1)t}{n} \rvert\)

则由题有

\[\begin{aligned} \lvert \frac{n}{(1 - m)t} \rvert & = \lvert \frac{(1 + m)t}{n} \rvert \\ t^2 & = \frac{n ^ 2}{1 - m^2} = \frac{n^2}{\frac{n^2}{2}} = 2 \\ t & = \pm \sqrt{2} \end{aligned} \]

故存在\(Q\),且\(Q(\sqrt{2}, 0)\)\(Q(-\sqrt{2}, 0)\)


3.

解:

由题可知,\(A(1, 0)\)\(AP\)的斜率存在且不为\(0\)

故可设\(AP: my = x - 1\),其中\(m \neq 0\),代入\(l\)\(P(-1, -\frac{2}{m})\)\(Q(-1, \frac{2}{m})\)

\(AP\)代入椭圆方程,解得\(y = 0\)\(-\frac{6m}{3m^2 + 4}\)

\(B\)异于点\(A\)\(\Rightarrow\)\(B(\frac{4 - 3m^2}{3m^2 + 4}, -\frac{6m}{3m^2 + 4})\)

\(BQ: \frac{8}{3m^2 + 4} (y - \frac{2}{m}) = -\frac{12m^2 + 8}{m(3m^2 + 4)} (x + 1)\) \(\Rightarrow\) \(D(\frac{2 - 3m^2}{3m^2 + 2}, 0)\)

\(\Rightarrow \lvert AD \rvert = \frac{6m^2}{3m^2 + 2}\)

\(S_{\Delta APD} = \frac{6m^2}{3m^2 + 2} \cdot \frac{2}{\lvert m \rvert} \div 2 = \frac{\sqrt{6}}{2}\)

整理得\(3 \lvert m \rvert ^2 - 2 \sqrt{6} \lvert m \rvert + 2 = 0\) \(\Rightarrow\) \(\lvert m \rvert = \frac{\sqrt{6}}{3}\) \(\Rightarrow\) \(m = \pm \frac{\sqrt{6}}{3}\)

\(AP: 3x + \sqrt{6} y - 3 = 0\)\(3x - \sqrt{6} y - 3 = 0\)

posted @ 2020-02-03 12:54  Acenaphthene  阅读(240)  评论(0编辑  收藏  举报