🥥 Table of Content
🥑 Get Started!
I. Top 8 Data Sturctures for Coding Interviews
0. Common Data Structure Operations Time Complexity
| Data Structure |
Time Complexity(Worst) |
Space Complexity(Worst) |
|
Access |
Search |
Insert |
Delete |
|
| Array |
O(1) |
O(n) |
O(n) |
O(n) |
O(n) |
| Linked List |
|
|
|
|
|
| HashMap |
|
|
|
|
|
| Queue |
|
|
|
|
|
| Binary Tree |
|
|
|
|
|
| Tries |
|
|
|
|
|
| Heap |
|
|
|
|
|
| Graph |
|
|
|
|
|
1. Array
2. Linked list
3. HashMap
4. Queue
5. Binary Tree
6. Tries
7. Heap
8. Graph
II. Sort Algorithms

class Solution:
def merge(self, arr, l, m, r):
# the length of the left and the right
n1 = m - l + 1
n2 = r - m
# 创建临时数组
L = [0] * (n1)
R = [0] * (n2)
# 拷贝数据到临时数组 arrays L[] 和 R[]
for i in range(0, n1):
L[i] = arr[l + i]
for j in range(0, n2):
R[j] = arr[m + 1 + j]
# 归并临时数组到 arr[l..r]
i = 0 # 初始化第一个子数组的索引
j = 0 # 初始化第二个子数组的索引
k = l # 初始归并子数组的索引
while i < n1 and j < n2:
if L[i] <= R[j]:
arr[k] = L[i]
i += 1
else:
arr[k] = R[j]
j += 1
k += 1
# 拷贝 L[] 的保留元素
while i < n1:
arr[k] = L[i]
i += 1
k += 1
# 拷贝 R[] 的保留元素
while j < n2:
arr[k] = R[j]
j += 1
k += 1
def mergeSort(self, arr, l, r):
if l < r:
m = l + (r - l) // 2
self.mergeSort(arr, l, m)
self.mergeSort(arr, m + 1, r)
self.merge(arr, l, m, r)
if __name__ == '__main__':
arr = [12, 11, 13, 5, 6, 7]
n = len(arr)
print("给定的数组")
for i in range(n):
print("%d" % arr[i]),
solution = Solution()
result = solution.mergeSort(arr, 0, n - 1)
print("\n\n排序后的数组")
for i in range(n):
print("%d" % arr[i])