POJ 2429 GCD & LCM Inverse(Pollard_Rho+dfs)
【题目链接】 http://poj.org/problem?id=2429
【题目大意】
给出最大公约数和最小公倍数,满足要求的x和y,且x+y最小
【题解】
我们发现,(x/gcd)*(y/gcd)=lcm/gcd,并且x/gcd和y/gcd互质
那么我们先利用把所有的质数求出来Pollard_Rho,将相同的质数合并
现在的问题转变成把合并后的质数分为两堆,使得x+y最小
我们考虑不等式a+b>=2sqrt(ab),在a趋向于sqrt(ab)的时候a+b越小
所以我们通过搜索求出最逼近sqrt(ab)的值即可。
【代码】
#include <cstdio>
#include <algorithm>
#include <cmath>
#define C 2730
#define S 3
using namespace std;
typedef long long ll;
ll n,m,s[1000],cnt,f[1000],cnf,ans;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll mul(ll a,ll b,ll n){return(a*b-(ll)(a/(long double)n*b+1e-3)*n+n)%n;}
ll pow(ll a, ll b, ll n){
ll d=1; a%=n;
while(b){
if(b&1)d=mul(d,a,n);
a=mul(a,a,n);
b>>=1;
}return d;
}
bool check(ll a,ll n){
ll m=n-1,x,y;int i,j=0;
while(!(m&1))m>>=1,j++;
x=pow(a,m,n);
for(i=1;i<=j;x=y,i++){
y=pow(x,2,n);
if((y==1)&&(x!=1)&&(x!=n-1))return 1;
}return y!=1;
}
bool miller_rabin(int times,ll n){
ll a;
if(n==1)return 0;
if(n==2)return 1;
if(!(n&1))return 0;
while(times--)if(check(rand()%(n-1)+1,n))return 0;
return 1;
}
ll pollard_rho(ll n,int c){
ll i=1,k=2,x=rand()%n,y=x,d;
while(1){
i++,x=(mul(x,x,n)+c)%n,d=gcd(y-x,n);
if(d>1&&d<n)return d;
if(y==x)return n;
if(i==k)y=x,k<<=1;
}
}
void findfac(ll n,int c){
if(n==1)return;
if(miller_rabin(S,n)){
s[cnt++]=n;
return;
}ll m=n;
while(m==n)m=pollard_rho(n,c--);
findfac(m,c),findfac(n/m,c);
}
void dfs(int pos,long long x,long long k){
if(pos>cnf)return;
if(x>ans&&x<=k)ans=x;
dfs(pos+1,x,k);
x*=f[pos];
if(x>ans&&x<=k)ans=x;
dfs(pos+1,x,k);
}
int main(){
while(~scanf("%lld%lld",&m,&n)){
if(n==m){printf("%lld %lld\n",n,n);continue;}
cnt=0; long long k=n/m;
findfac(k,C);
sort(s,s+cnt);
f[0]=s[0]; cnf=0;
for(int i=1;i<cnt;i++){
if(s[i]==s[i-1])f[cnf]*=s[i];
else f[++cnf]=s[i];
}long long tmp=(long long)sqrt(1.0*k);
ans=1; dfs(0,1,tmp);
printf("%lld %lld\n",m*ans,k/ans*m);
}return 0;
}
愿你出走半生,归来仍是少年

浙公网安备 33010602011771号