设计模式概述

一、定义

  设计模式是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。使用设计模式是为了可重用代码、让代码更容易被他人理解、保证代码可靠性、程序的重用性。

 

二、产生背景

  肯特·贝克和沃德·坎宁安在1987年利用克里斯托佛·亚历山大在建筑设计领域里的思想开发了设计模式并把此思想应用在Smalltalk中的图形用户接口的生成中。一年后Erich Gamma在他的苏黎世大学博士毕业论文中开始尝试把这种思想改写为适用于软件开发。与此同时James Coplien 在1989年至1991 年也在利用相同的思想致力于C++的开发,而后于1991年发表了他的著作Advanced C++ Idioms。就在这一年Erich Gamma 得到了博士学位,然后去了美国,在那与Richard Helm, Ralph Johnson ,John Vlissides合作出版了Design Patterns - Elements of Reusable Object-Oriented Software 一书,在此书中共收录了23个设计模式。这四位作者在软件开发领域里也以他们的匿名著称Gang of Four(四人帮,简称GoF),并且是他们在此书中的协作导致了软件设计模式的突破。有时这个匿名GoF也会用于指代前面提到的那本书。

 

三、学习的意义

  设计模式的本质是面向对象设计原则的实际运用,是对类的封装性、继承性和多态性以及类的关联关系和组合关系的充分理解。正确使用设计模式具有以下优点。

  • 可以提高程序员的思维能力、编程能力和设计能力。
  • 使程序设计更加标准化、代码编制更加工程化,使软件开发效率大大提高,从而缩短软件的开发周期。
  • 使设计的代码可重用性高、可读性强、可靠性高、灵活性好、可维护性强。

 

四、设计模式的分类

  设计模式有两种分类方法,即根据模式的目的来分和根据模式的作用的范围来分。

1. 根据目的来分

根据模式是用来完成什么工作来划分,这种方式可分为创建型模式、结构型模式和行为型模式 3 种。

    1. 创建型模式:用于描述“怎样创建对象”,它的主要特点是“将对象的创建与使用分离”。GoF 中提供了单例、原型、工厂方法、抽象工厂、建造者等 5 种创建型模式。
    2. 结构型模式:用于描述如何将类或对象按某种布局组成更大的结构(对象和谁有关),GoF 中提供了代理、适配器、桥接、装饰、外观、享元、组合等 7 种结构型模式。
    3. 行为型模式:用于描述类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务(对象与对象在干嘛),以及怎样分配职责。GoF 中提供了模板方法、策略、命令、职责链、状态、观察者、中介者、迭代器、访问者、备忘录、解释器等 11 种行为型模式。

2. 根据作用范围来分

根据模式是主要用于类上还是主要用于对象上来分,这种方式可分为类模式和对象模式两种。

    1. 类模式:用于处理类与子类之间的关系,这些关系通过继承来建立,是静态的,在编译时刻便确定下来了。GoF中的工厂方法、(类)适配器、模板方法、解释器属于该模式。
    2. 对象模式:用于处理对象之间的关系,这些关系可以通过组合或聚合来实现,在运行时刻是可以变化的,更具动态性。GoF 中除了以上 4 种,其他的都是对象模式。

    具体分类如下图所示

            

 

 

   

3. GoF的23种设计模式的功能

前面说明了 GoF 的 23 种设计模式的分类,现在对各个模式的功能进行介绍。

    1. 单例(Singleton)模式:某个类只能生成一个实例,该类提供了一个全局访问点供外部获取该实例,其拓展是有限多例模式。
    2. 原型(Prototype)模式:将一个对象作为原型,通过对其进行复制而克隆出多个和原型类似的新实例。
    3. 工厂方法(Factory Method)模式:定义一个用于创建产品的接口,由子类决定生产什么产品。
    4. 抽象工厂(AbstractFactory)模式:提供一个创建产品族的接口,其每个子类可以生产一系列相关的产品。
    5. 建造者(Builder)模式:将一个复杂对象分解成多个相对简单的部分,然后根据不同需要分别创建它们,最后构建成该复杂对象。
    6. 代理(Proxy)模式:为某对象提供一种代理以控制对该对象的访问。即客户端通过代理间接地访问该对象,从而限制、增强或修改该对象的一些特性。
    7. 适配器(Adapter)模式:将一个类的接口转换成客户希望的另外一个接口,使得原本由于接口不兼容而不能一起工作的那些类能一起工作。
    8. 桥接(Bridge)模式:将抽象与实现分离,使它们可以独立变化。它是用组合关系代替继承关系来实现,从而降低了抽象和实现这两个可变维度的耦合度。
    9. 装饰(Decorator)模式:动态的给对象增加一些职责,即增加其额外的功能。
    10. 外观(Facade)模式:为多个复杂的子系统提供一个一致的接口,使这些子系统更加容易被访问。
    11. 享元(Flyweight)模式:运用共享技术来有效地支持大量细粒度对象的复用。
    12. 组合(Composite)模式:将对象组合成树状层次结构,使用户对单个对象和组合对象具有一致的访问性。
    13. 模板方法(TemplateMethod)模式:定义一个操作中的算法骨架,而将算法的一些步骤延迟到子类中,使得子类可以不改变该算法结构的情况下重定义该算法的某些特定步骤。
    14. 策略(Strategy)模式:定义了一系列算法,并将每个算法封装起来,使它们可以相互替换,且算法的改变不会影响使用算法的客户。
    15. 命令(Command)模式:将一个请求封装为一个对象,使发出请求的责任和执行请求的责任分割开。
    16. 职责链(Chain of Responsibility)模式:把请求从链中的一个对象传到下一个对象,直到请求被响应为止。通过这种方式去除对象之间的耦合。
    17. 状态(State)模式:允许一个对象在其内部状态发生改变时改变其行为能力。
    18. 观察者(Observer)模式:多个对象间存在一对多关系,当一个对象发生改变时,把这种改变通知给其他多个对象,从而影响其他对象的行为。
    19. 中介者(Mediator)模式:定义一个中介对象来简化原有对象之间的交互关系,降低系统中对象间的耦合度,使原有对象之间不必相互了解。
    20. 迭代器(Iterator)模式:提供一种方法来顺序访问聚合对象中的一系列数据,而不暴露聚合对象的内部表示。
    21. 访问者(Visitor)模式:在不改变集合元素的前提下,为一个集合中的每个元素提供多种访问方式,即每个元素有多个访问者对象访问。
    22. 备忘录(Memento)模式:在不破坏封装性的前提下,获取并保存一个对象的内部状态,以便以后恢复它。
    23. 解释器(Interpreter)模式:提供如何定义语言的文法,以及对语言句子的解释方法,即解释器。


必须指出,这 23 种设计模式不是孤立存在的,很多模式之间存在一定的关联关系,在大的系统开发中常常同时使用多种设计模式,希望读者认真学好它们。在接下来的文章中会对各种设计模式进行详细的解释。

 

五、设计模式的八大原则

  1.开闭原则(目标,总的指导思想)

    对拓展开放,对修改关闭

    增加新功能,不改变原有代码

   2.类的职责单一(一个类的定义)

  一个类有且只有一个改变它的原因

  适用于基础类,不适用于基于基础类构建的聚合类

   3.依赖倒置(依赖抽象)

  客户端代码(调用的类)尽量依赖(使用)抽象的组件,(即依赖父类而不是依赖子类)

  抽象是稳定的,实现是多变的

   4.组合复用 原则(复用的最佳实践)

  如果仅仅为了代码复用优先选择组合复用,而不是继承复用

  组合的耦合性相对继承低

   5.里式替换(继承后的重写,指导继承的设计)

  父类出现的地方可以被子类替换(声明父存放子类对象),在替换后依然保持原有功能

  子类要拥有父类的所有功能

  子类在重写父类方法时,尽量选择扩展重写,防止改变了功能

   6.接口隔离(功能拆分)

  尽量定义小而精的接口,少定义大而全的接口,本质与单一职责相同

  小接口之间功能隔离,实现类需要多个功能时可以选择多实现,

   7.面向接口编程而非面向实现(切换、并行开发)

  客户端通过一系列抽象操作实例,而无需关注具体类型

  便于灵活切换一系列功能

  实现软件的并行开发

   8.迪米特法则(类与类交互的原则)

  不要和陌生人说话

    类与类交互时,在满足功能要求的基础上,传递的数据量越少越好,因为这样可以降低耦合度

 

六、设计的主要思想

分而治之 ----  将一个大的需求分解成许多类,每个类处理一个独立的模块

   拆分的好处:独立模块便于分工,每个模块便于复用,可拓展性强

 

封装变化 ----  变化的地方(可能变化的功能)独立封装,避免影响其他模块

 

高内聚  ----  类中各个方法都在完成一项任务(单一职责的类)

  复杂的实现封装在内部,对外提供简单的调用

 

低耦合  ----  类与类的关联性依赖要低(每个类独立)

  当一个模块的改变,尽量少影响其他模块

 

 

最高的内聚莫过于类中仅包含一个方法,这将会导致高内聚高耦合,

最低的耦合莫过于类中包含所有方法,这将会导致低耦合低内聚

 

 

 

posted @ 2020-07-10 20:53  天份&  阅读(296)  评论(0编辑  收藏  举报