关于可变参数函数的定义
某些情况下希望函数的参数个数可以根据需要确定。典型的例子有大家熟悉的函数printf()、scanf()和系统调用execl()等。那么它们是怎样实现的呢?C编译器通常提供了一系列处理这种情况的宏,以屏蔽不同的硬件平台造成的差异,增加程序的可移植性。这些宏包括va_start、va_arg和va_end等。
---- 采用ANSI标准形式时,参数个数可变的函数的原型声明是:
type funcname(type para1, type para2, ...)
---- 这种形式至少需要一个普通的形式参数,后面的省略号不表示省略,而是函数原型的一部分。type是函数返回值和形式参数的类型。
---- 采用与UNIX System V兼容的声明方式时,参数个数可变的函数原型是:
type funcname(va_alist)
va_dcl
---- 这种形式不需要提供任何普通的形式参数。type是函数返回值的类型。va_dcl是对函数原型声明中参数va_alist的详细声明,实际是一个宏定义,对不同的硬件平台采用不同的类型来定义,但在最后都包括了一个分号。因此va_dcl后不再需要加上分号了。va_dcl在代码中必须原样给出。va_alist在VC中可以原样给出,也可以略去。
---- 此外,采用头文件stdarg.h编写的程序是符合ANSI标准的,可以在各种操作系统和硬件上运行;而采用头文件varargs.h的方式仅仅是为了与以前的程序兼容。所以建议大家使用前者。以下主要就前一种方式对参数的处理做出说明。两种方式的基本原理是一致的,只是在语法形式上有一些细微的区别。
---- va_start使argp指向第一个可选参数。va_arg返回参数列表中的当前参数并使argp指向参数列表中的下一个参数。va_end把argp指针清为NULL。函数体内可以多次遍历这些参数,但是都必须以va_start开始,并以va_end结尾。
---- 调用者在实际调用参数个数可变的函数时,要通过一定的方法指明实际参数的个数,例如把最后一个参数置为空字符串(系统调用execl()就是这样的)、-1或其他的方式(函数printf()就是通过第一个参数,即输出格式的定义来确定实际参数的个数的)。
---- 下面给出一个具体的例子。是采用了符合ANSI标准的形式的代码。代码中加了一些注释,这里就不再解释了。该例子已经在VC/Windows XP、CC/AIX4.3.2.0、GCC/SUSE7.3环境下编译并正常运行。
---- 1、演示如何使用参数个数可变的函数,采用ANSI标准形式
#include < stdio.h >;
#include < string.h >;
#include < stdarg.h >;
/* 函数原型声明,至少需要一个确定的参数,
注意括号内的省略号 */
int demo( char *, ... );
void main( void )
{
demo("DEMO", "This", "is", "a", "demo!", "\0");
}
/* ANSI标准形式的声明方式,括号内的省略号表示可选参数 */
int demo( char *msg, ... )
{
va_list argp; /* 定义保存函数参数的结构 */
int argno = 0; /* 纪录参数个数 */
char *para; /* 存放取出的字符串参数 */
/* argp指向传入的第一个可选参数,
msg是最后一个确定的参数 */
va_start( argp, msg );
while (1) {
para = va_arg( argp, char *); /*
取出当前的参数,类型为char *. */
if ( strcmp( para, "\0") == 0 )
/* 采用空串指示参数输入结束 */
break;
printf("Parameter #%d is: %s\n", argno, para);
argno++;
}
va_end( argp ); /* 将argp置为NULL */
return 0;
}
//=============================================
va_list、va_start、va_arg、va_end的原理与使用
- 概述
由于在C语言中没有函数重载,解决不定数目函数参数问题变得比较麻烦;即使采用C++,如果参数个数不能确定,也很难采用函数重载.对这种情况,有些人采用指针参数来解决问题.下面就c语言中处理不定参数数目的问题进行讨论. - 定义
大家先看几宏.
在VC++6.0的include有一个stdarg.h头文件,有如下几个宏定义:
#define _INTSIZEOF(n) ((sizeof(n)+sizeof(int)-1)&~(sizeof(int) - 1) )
#define va_start(ap,v) ( ap = (va_list)&v + _INTSIZEOF(v) ) //第一个可选参数地址
#define va_arg(ap,t) ( *(t *)((ap += _INTSIZEOF(t)) - _INTSIZEOF(t)) ) //下一个参数地址
#define va_end(ap) ( ap = (va_list)0 ) // 将指针置为无效
如果对以上几个宏定义不理解,可以略过,接这看后面的内容. - 参数在堆栈中分布,位置
在进程中,堆栈地址是从高到低分配的.当执行一个函数的时候,将参数列表入栈,压入堆栈的高地址部分,然后入栈函数的返回地址,接着入栈函数的执行代码,这个入栈过程,堆栈地址不断递减,一些黑客就是在堆栈中修改函数返回地址,执行自己的代码来达到执行自己插入的代码段的目的.
总之,函数在堆栈中的分布情况是:地址从高到低,依次是:函数参数列表,函数返回地址,函数执行代码段.
堆栈中,各个函数的分布情况是倒序的.即最后一个参数在列表中地址最高部分,第一个参数在列表地址的最低部分.参数在堆栈中的分布情况如下:
最后一个参数
倒数第二个参数
...
第一个参数
函数返回地址
函数代码段 - 示例代码
void arg_test(int i, ...);
int main(int argc,char *argv[])
{
int int_size = _INTSIZEOF(int);
printf("int_size=%d\n", int_size);
arg_test(0, 4);
arg_cnt(4,1,2,3,4);
return 0;
}
void arg_test(int i, ...)
{
int j="0";
va_list arg_ptr;
va_start(arg_ptr, i);
printf("&i = %p\n", &i);//打印参数i在堆栈中的地址
printf("arg_ptr = %p\n", arg_ptr);
//打印va_start之后arg_ptr地址,
//应该比参数i的地址高sizeof(int)个字节
//这时arg_ptr指向下一个参数的地址
j=*((int *)arg_ptr);
printf("%d %d\n", i, j);
j=va_arg(arg_ptr, int);
printf("arg_ptr = %p\n", arg_ptr);
//打印va_arg后arg_ptr的地址
//应该比调用va_arg前高sizeof(int)个字节
//这时arg_ptr指向下一个参数的地址
va_end(arg_ptr);
printf("%d %d\n", i, j);
} - 代码说明:
int int_size = _INTSIZEOF(int);得到int类型所占字节数
va_start(arg_ptr, i); 得到第一个可变参数地址,根据定义(va_list)&v得到起始参数的地址, 再加上_INTSIZEOF(v) ,就是其实参数下一个参数的地址,即第一个可变参数地址.
j=va_arg(arg_ptr, int); 得到第一个参参数的值,并且arg_ptr指针上移一个_INTSIZEOF(int),即指向下一个可变参数的地址.
va_end(arg_ptr);置空arg_ptr,即arg_ptr=0;
总结:读取可变参数的过程其实就是堆栈中,使用指针,遍历堆栈段中的参数列表,从低地址到高地址一个一个地把参数内容读出来的过程. - 在编程中应该注意的问题和解决办法
虽然可以通过在堆栈中遍历参数列表来读出所有的可变参数,但是由于不知道可变参数有多少个,什么时候应该结束遍历,如果在堆栈中遍历太多,那么很可能读取一些无效的数据.
解决办法:a.可以在第一个起始参数中指定参数个数,那么就可以在循环还中读取所有的可变参数;b.定义一个结束标记,在调用函数的时候,在最后一个参数中传递这个标记,这样在遍历可变参数的时候,可以根据这个标记结束可变参数的遍历;
下面是一段示例代码:
//第一个参数定义可选参数个数,用于循环取初参数内容
void arg_cnt(int cnt, ...);
int main(int argc,char *argv[])
{
int int_size = _INTSIZEOF(int);
printf("int_size=%d\n", int_size);
arg_cnt(4,1,2,3,4);
return 0;
}
void arg_cnt(int cnt, ...)
{
int value="0";
int i="0";
int arg_cnt=cnt;
va_list arg_ptr;
va_start(arg_ptr, cnt);
for(i = 0; i < cnt; i++)
{
value = va_arg(arg_ptr,int);
printf("value%d=%d\n", i+1, value);
}
}
虽然可以根据上面两个办法解决读取参数个数的问题,但是如果参数类型都是不定的,该怎么办,如果不知道参数的类型,即使读到了参数也没有办法进行处理.解决办法:可以自定义一些可能出现的参数类型,这样在可变参数列表中,可以可变参数列表中的那类型,然后根据类型,读取可变参数值,并进行准确地转换.传递参数的时候可以这样传递:参数数目,可变参数类型1,可变参数值1,可变参数类型2,可变参数值2,....
这里给出一个完整的例子:
#include
#include
const int INT_TYPE = 100000;
const int STR_TYPE = 100001;
const int CHAR_TYPE = 100002;
const int LONG_TYPE = 100003;
const int FLOAT_TYPE = 100004;
const int DOUBLE_TYPE = 100005;
//第一个参数定义可选参数个数,用于循环取初参数内容
//可变参数采用arg_type,arg_value...的形式传递,以处理不同的可变参数类型
void arg_type(int cnt, ...);
//第一个参数定义可选参数个数,用于循环取初参数内容
void arg_cnt(int cnt, ...);
//测试va_start,va_arg的使用方法,函数参数在堆栈中的地址分布情况
void arg_test(int i, ...);
int main(int argc,char *argv[])
{
int int_size = _INTSIZEOF(int);
printf("int_size=%d\n", int_size);
arg_test(0, 4);
arg_cnt(4,1,2,3,4);
arg_type(2, INT_TYPE, 222, STR_TYPE, "ok,hello world!");
return 0;
}
void arg_test(int i, ...)
{
int j="0";
va_list arg_ptr;
va_start(arg_ptr, i);
printf("&i = %p\n", &i);//打印参数i在堆栈中的地址
printf("arg_ptr = %p\n", arg_ptr);
//打印va_start之后arg_ptr地址,
//应该比参数i的地址高sizeof(int)个字节
//这时arg_ptr指向下一个参数的地址
j=*((int *)arg_ptr);
printf("%d %d\n", i, j);
j=va_arg(arg_ptr, int);
printf("arg_ptr = %p\n", arg_ptr);
//打印va_arg后arg_ptr的地址
//应该比调用va_arg前高sizeof(int)个字节
//这时arg_ptr指向下一个参数的地址
va_end(arg_ptr);
printf("%d %d\n", i, j);
}
void arg_cnt(int cnt, ...)
{
int value="0";
int i="0";
int arg_cnt=cnt;
va_list arg_ptr;
va_start(arg_ptr, cnt);
for(i = 0; i < cnt; i++)
{
value = va_arg(arg_ptr,int);
printf("value%d=%d\n", i+1, value);
}
}
void arg_type(int cnt, ...)
{
int arg_type = 0;
int int_value=0;
int i="0";
int arg_cnt=cnt;
char *str_value = NULL;
va_list arg_ptr;
va_start(arg_ptr, cnt);
for(i = 0; i < cnt; i++)
{
arg_type = va_arg(arg_ptr,int);
switch(arg_type)
{
case INT_TYPE:
int_value = va_arg(arg_ptr,int);
printf("value%d=%d\n", i+1, int_value);
break;
case STR_TYPE:
str_value = va_arg(arg_ptr,char*);
printf("value%d=%d\n", i+1, str_value);
break;
default:
break;
}
}
}
以上是我个人的见解,不对的地方希望大家指正,发表看法,我不胜感谢!!!
va_start() va_end()函数应用
1:当无法列出传递函数的所有实参的类型和数目时,可用省略号指定参数表
void foo(...);
void foo(parm_list,...);
2:函数参数的传递原理
函数参数是以数据结构:栈的形式存取,从右至左入栈.eg:
#include
void fun(int a, ...)
{
int *temp = &a;
temp++;
for (int i = 0; i < a; ++i)
{
cout << *temp << endl;
temp++;
}
}
int main()
{
int a = 1;
int b = 2;
int c = 3;
int d = 4;
fun(4, a, b, c, d);
system("pause");
return 0;
}
Output::
1
2
3
4
3:获取省略号指定的参数
在函数体中声明一个va_list,然后用va_start函数来获取参数列表中的参数,使用完毕后调用va_end()结束。像这段代码:
void TestFun(char* pszDest, int DestLen, const char* pszFormat, ...)
{
va_list args;
va_start(args, pszFormat);
_vsnprintf(pszDest, DestLen, pszFormat, args);
va_end(args);
}
4.va_start使argp指向第一个可选参数。va_arg返回参数列表中的当前参数并使argp指向参数列表中的下一个参数。va_end把argp指针清为NULL。函数体内可以多次遍历这些参数,但是都必须以va_start开始,并以va_end结尾。
1).演示如何使用参数个数可变的函数,采用ANSI标准形式
#include 〈stdio.h〉
#include 〈string.h〉
#include 〈stdarg.h〉
/*函数原型声明,至少需要一个确定的参数,注意括号内的省略号*/
int demo( char, ... );
void main( void )
{
demo("DEMO", "This", "is", "a", "demo!", "");
}
/*ANSI标准形式的声明方式,括号内的省略号表示可选参数*/
int demo( char ?msg, ... )
{
/*定义保存函数参数的结构*/
va_list argp;
int argno = 0;
char para;
/*argp指向传入的第一个可选参数,msg是最后一个确定的参数*/
va_start( argp, msg );
while (1)
{
para = va_arg( argp, char);
if ( strcmp( para, "") == 0 )
break;
printf("Parameter #%d is: %s\n", argno, para);
argno++;
}
va_end( argp );
/*将argp置为NULL*/
return 0;
}
2)//示例代码1:可变参数函数的使用
#include "stdio.h"
#include "stdarg.h"
void simple_va_fun(int start, ...)
{
va_list arg_ptr;
int nArgValue =start;
int nArgCout="0"; //可变参数的数目
va_start(arg_ptr,start); //以固定参数的地址为起点确定变参的内存起始地址。
do
{
++nArgCout;
printf("the %d th arg: %d\n",nArgCout,nArgValue); //输出各参数的值
nArgValue = va_arg(arg_ptr,int); //得到下一个可变参数的值
} while(nArgValue != -1);
return;
}
int main(int argc, char* argv[])
{
simple_va_fun(100,-1);
simple_va_fun(100,200,-1);
return 0;
}
3)//示例代码2:扩展——自己实现简单的可变参数的函数。
下面是一个简单的printf函数的实现,参考了中的例子
#include "stdio.h"
#include "stdlib.h"
void myprintf(char* fmt, ...) //一个简单的类似于printf的实现,//参数必须都是int 类型
{
char* pArg="NULL"; //等价于原来的va_list
char c;
pArg = (char*) &fmt; //注意不要写成p = fmt !!因为这里要对//参数取址,而不是取值
pArg += sizeof(fmt); //等价于原来的va_start
do
{
c =*fmt;
if (c != '%')
{
putchar(c); //照原样输出字符
}
else
{
//按格式字符输出数据
switch(*++fmt)
{
case'd':
printf("%d",*((int*)pArg));
break;
case'x':
printf("%#x",*((int*)pArg));
break;
default:
break;
}
pArg += sizeof(int); //等价于原来的va_arg
}
++fmt;
}while (*fmt != '\0');
pArg = NULL; //等价于va_end
return;
}
int main(int argc, char* argv[])
{
int i = 1234;
int j = 5678;
myprintf("the first test:i=%d\n",i,j);
myprintf("the secend test:i=%d; %x;j=%d;\n",i,0xabcd,j);
system("pause");
return 0;
}
//=============================================
可变参数的英文表示为:variable argument.
它在函数的定义时,用三个点号'.'表示,用逗号与其它参数分隔.
可变参数的特点:不像固定参数那样一一对应,也不像固定参数有固定的参数类型和参数名称;可变参数中个数不
定可是传入的是一个参数也可以是多个;可变参数中的每个参数的类型可以不同,也可以相同;可变参数的每个参数并没有
实际的名称与之相对应.
由此可见,可变参数的形式非常自由而富有弹生.因些,它给那些天才程序员有更大地想象和发挥空间.
然而,更多地自由,同样也加大操作上的难度.
以下就对可变参数的几个方面作一定的介绍.
1)可变参数的存储形式.
大家都知道,一般函数的形参属于局部变量.而局部变量就是存储在内存的栈区(所谓的栈区:由编译器自动分配释放,
存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。).可变参数也是存储在内存栈区.
在对函数的形参存储的时侯,编译器是从函数的形参的右边到左边逐一地压栈,
这样保证了栈顶是函数的形参的第一个参数(从左到右数).而80x86平台下的内存分配顺序是从高地址内存到低地址内存.
因此,函数的形参在内存的存储形式如下图(以fun(int var1,int var2,...,int var3,int var4)为例):
栈区:
|栈顶 低地址
|第一个固定参数var1
|可变参数前的第一个固定参数var2
|可变参数的第一个参数
|...
|可变参数的最后一个参数
|函数的倒数第二个固定参数var3
|函数的最后一个固定参数var4
|...
|函数的返回地址
|...
|栈底 高地址
2)使用可变参数所用到头文件和相关宏说明
在此,以TC2.0编译器为参考对象来说明.
可变参数的相关定义在TC2.0的名为"STDARG.H"的头文件中.
此文件为:
/* stdarg.h
Definitions for accessing parameters in functions that accept
a variable number of arguments.
Copyright (c) Borland International 1987,1988
All Rights Reserved.
*/
#if __STDC__
#define _Cdecl
#else
#define _Cdecl cdecl
#endif
#if !defined(__STDARG)
#define __STDARG
typedef void *va_list;
#define va_start(ap, parmN) (ap = ...)
#define va_arg(ap, type) (*((type *)(ap))++)
#define va_end(ap)
#define _va_ptr (...)
#endif
以上为"STDARG.H"的内容.
该文件定义了使用可变参数所用到的数据类型:typedef void *va_list;
va_start(ap,parmN)起到初始化,使用得ap指向可变参数的第一个参数.ap的类型为va_list,
parmN为可变参数的前面一个固定参数.
va_arg(ap,type)获得当前ap所指向的参数,并使ap指向可变参数的下一个参数,type为需要获得的参数的类型.
va_end(ap) 结束可变参数获取.
3)可变参数的使用实例
实例目的:用可变参数来实现个数不定的字符串的传递,并显示传递过来的字符串.
#include<stdio.h>
#include<conio.h>
#include<stdarg.h>
void tVarArg(int num,...);/*num为可变参数的个数*/
int main(void)
{
clrscr();
tVarArg(5,"Hello! ","My ","name ","is ","neverTheSame.\n");
tVarArg(8,"This ","is ","an ","example ","about ","variable-argument ","in ","funtion");
getch();
return 0;
}
void tVarArg(int num,...)
{
va_list argp; /*定义一个指向可变参数的变量*/
va_start(argp,num); /*初始化,使用argp指向可变参数的第一个参数*/
while(--num>=0)
printf("%s",(va_arg(argp,char*)));/*va_arg(argp,char*)获得argp所指向的参数,
并使用argp指向下一个参数,char*使用所获得的参数的类型转换为char*型.*/
va_end(argp); /*结束可变参数获取*/
return ;
}
4)可变参数的使用需要注意的问题
1.每个函数的可变参数至多有一个.
2.va_start(ap,parmN)中parmN为可变参数前的一个固定参数.
3.可变参数的个数不确定,完全由程序约定.
4.可变参数的类型不确定,完全由va_arg(ap,type)中的type指定,然后就把参数的类型强制转换.
而printf()中不是实现了识别参数吗?那是因为函数
printf()是从固定参数format字符串来分析出参数的类型,再调用va_arg
的来获取可变参数的.也就是说,你想实现智能识别可变参数的话是要通
过在自己的程序里作判断来实现的.
5.编译器对可变参数的函数的原型检查不够严格,对编程人员要求很高.
//==============================================
C语言中有一种长度不确定的参数,形如:"…",它主要用在参数个数不确定的函数中,我们最容易想到的例子是printf函数。
原型:
int printf( const char *format [, argument]... );
使用例:
printf("Enjoy yourself everyday!\n");
printf("The value is %d!\n", value);
这种可变参数可以说是C语言一个比较难理解的部分,这里会由几个问题引发一些对它的分析。
注意:在C++中有函数重载(overload)可以用来区别不同函数参数的调用,但它还是不能表示任意数量的函数参数。
问题:printf的实现
请问,如何自己实现printf函数,如何处理其中的可变参数问题? 答案与分析:
在标准C语言中定义了一个头文件专门用来对付可变参数列表,它包含了一组宏,和一个va_list的typedef声明。一个典型实现如下:
typedef char* va_list;
#define va_start(list) list = (char*)&va_alist
#define va_end(list)
#define va_arg(list, mode)\
((mode*) (list += sizeof(mode)))[-1]
自己实现printf:
#include
int printf(char* format, …)
{
va_list ap;
va_start(ap, format);
int n = vprintf(format, ap);
va_end(ap);
return n;
}
问题:运行时才确定的参数
有没有办法写一个函数,这个函数参数的具体形式可以在运行时才确定?
答案与分析:
目前没有"正规"的解决办法,不过独门偏方倒是有一个,因为有一个函数已经给我们做出了这方面的榜样,那就是main(),它的原型是:
int main(int argc,char *argv[]);
函数的参数是argc和argv。
深入想一下,"只能在运行时确定参数形式",也就是说你没办法从声明中看到所接受的参数,也即是参数根本就没有固定的形式。常用的办法是你可以通过定义一个void *类型的参数,用它来指向实际的参数区,然后在函数中根据根据需要任意解释它们的含义。这就是main函数中argv的含义,而argc,则用来表明实际的参数个数,这为我们使用提供了进一步的方便,当然,这个参数不是必需的。
虽然参数没有固定形式,但我们必然要在函数中解析参数的意义,因此,理所当然会有一个要求,就是调用者和被调者之间要对参数区内容的格式,大小,有效性等所有方面达成一致,否则南辕北辙各说各话就惨了。
问题:可变长参数的传递
有时候,需要编写一个函数,将它的可变长参数直接传递给另外的函数,请问,这个要求能否实现?
答案与分析:
目前,你尚无办法直接做到这一点,但是我们可以迂回前进,首先,我们定义被调用函数的参数为va_list类型,同时在调用函数中将可变长参数列表转换为va_list,这样就可以进行变长参数的传递了。看如下所示:
void subfunc (char *fmt, va_list argp)
{
...
arg = va_arg (fmt, argp); /* 从argp中逐一取出所要的参数 */
...
}
void mainfunc (char *fmt, ...)
{
va_list argp;
va_start (argp, fmt); /* 将可变长参数转换为va_list */
subfunc (fmt, argp); /* 将va_list传递给子函数 */
va_end (argp);
...
}
问题:可变长参数中类型为函数指针
我想使用va_arg来提取出可变长参数中类型为函数指针的参数,结果却总是不正确,为什么?
答案与分析:
这个与va_arg的实现有关。一个简单的、演示版的va_arg实现如下:
#define va_arg(argp, type) \
(*(type *)(((argp) += sizeof(type)) - sizeof(type)))
其中,argp的类型是char *。
如果你想用va_arg从可变参数列表中提取出函数指针类型的参数,例如
int (*)(),则va_arg(argp, int (*)())被扩展为:
(*(int (*)() *)(((argp) += sizeof (int (*)())) -sizeof (int (*)())))
显然,(int (*)() *)是无意义的。
解决这个问题的办法是将函数指针用typedef定义成一个独立的数据类型,例如:
typedef int (*funcptr)();
这时候再调用va_arg(argp, funcptr)将被扩展为:
(* (funcptr *)(((argp) += sizeof (funcptr)) - sizeof (funcptr)))
这样就可以通过编译检查了。
问题:可变长参数的获取
有这样一个具有可变长参数的函数,其中有下列代码用来获取类型为float的实参:
va_arg (argp, float);
这样做可以吗?
答案与分析:
不可以。在可变长参数中,应用的是"加宽"原则。也就是float类型被扩展成double;char, short被扩展成int。因此,如果你要去可变长参数列表中原来为float类型的参数,需要用va_arg(argp, double)。对char和short类型的则用va_arg(argp, int)。
问题:定义可变长参数的一个限制
为什么我的编译器不允许我定义如下的函数,也就是可变长参数,但是没有任何的固定参数?
int f (...)
{
...
}
答案与分析:
不可以。这是ANSI C 所要求的,你至少得定义一个固定参数。
这个参数将被传递给va_start(),然后用va_arg()和va_end()来确定所有实际调用时可变长参数的类型和值

浙公网安备 33010602011771号