osgAnimation例子的注释的注释

osgAnimation例子的注释的注释

转自:http://www.cnblogs.com/sunliming/archive/2011/12/12/2284995.html

  1 #include <osg/Notify>
  2 #include <osg/MatrixTransform>
  3 #include <osg/PositionAttitudeTransform>
  4 #include <osg/Geometry>
  5 #include <osg/Geode>
  6 
  7 #include <osgUtil/Optimizer>
  8 
  9 #include <osgDB/Registry>
 10 #include <osgDB/ReadFile>
 11 
 12 #include <osgGA/TrackballManipulator>
 13 #include <osgGA/FlightManipulator>
 14 #include <osgGA/DriveManipulator>
 15 
 16 #include <osgSim/OverlayNode>
 17 
 18 #include <osgViewer/Viewer>
 19 #include <iostream>
 20 
 21 // 创建动画路径,参数有中心点,半径,以及循环时间
 22 osg::AnimationPath* createAnimationPath(const osg::Vec3& center,float radius,double looptime)
 23 {
 24     // 实例化动画路径类
 25     // set up the animation path
 26     osg::AnimationPath* animationPath = new osg::AnimationPath;
 27     // 设置动画路径的播放模式,当前使用循环模式(SWING LOOP NO_LOOPING )SWING就是在一个区间内顺逆方向循环,LOOP是顺一个方向循环
 28     animationPath->setLoopMode(osg::AnimationPath::LOOP);
 29    
 30 
 31     // 分40个阶段 这个意思就是分为四十个控制点,犹如四十条边的多边形,沿着这个路线飞行
 32     int numSamples = 40;
 33     float yaw = 0.0f;
 34     // 偏航的分量,这是一个角度分量,算出来每一个多边形的边对应的角度分量2*PI/(n-1)
 35     float yaw_delta = 2.0f*osg::PI/((float)numSamples-1.0f);
 36     // 旋转角度为30度
 37     float roll = osg::inDegrees(30.0f);
 38    
 39     // 时间分量
 40     double time=0.0f;
 41     //平均的两个控制点之间的时间
 42     double time_delta = looptime/(double)numSamples;
 43     // 将时间控制点与位置坐标插入到动画路径中
 44     for(int i=0;i<numSamples;++i)
 45     {
 46         //这儿是计算出来每个多边形的顶点的坐标,(sinx*r,cosx*r,0.0)是相当于中心点的增量
 47         osg::Vec3 position(center+osg::Vec3(sinf(yaw)*radius,cosf(yaw)*radius,0.0f));
 48         //四元数表示方向,表示在3D空间中的旋转方向**四元数很复杂**这个表示,绕x轴旋转roll,y轴旋转-(yaw+90),z轴0
 49         osg::Quat rotation(osg::Quat(roll,osg::Vec3(0.0,1.0,0.0))*osg::Quat(-(yaw+osg::inDegrees(90.0f)),osg::Vec3(0.0,0.0,1.0)));
 50        
 51         //和flash动画类似,控制点有位置和转动角度,这样控制点之间是均匀运动
 52         animationPath->insert(time,osg::AnimationPath::ControlPoint(position,rotation));
 53 
 54         //递增yaw和time
 55         yaw += yaw_delta;
 56         time += time_delta;
 57 
 58     }
 59     return animationPath;   
 60 }
 61 
 62 
 63 // 创建底板,中心点位置在center,半径为radius
 64 osg::Node* createBase(const osg::Vec3& center,float radius)
 65 {
 66 
 67     // 一个10x10的底板
 68     int numTilesX = 10;
 69     int numTilesY = 10;
 70    
 71     // 长度与宽度的尺寸
 72     float width = 2*radius;
 73     float height = 2*radius;
 74    
 75     // 计算初始位置与x、y的分量
 76     osg::Vec3 v000(center - osg::Vec3(width*0.5f,height*0.5f,0.0f));
 77     osg::Vec3 dx(osg::Vec3(width/((float)numTilesX),0.0,0.0f));
 78     osg::Vec3 dy(osg::Vec3(0.0f,height/((float)numTilesY),0.0f));
 79    
 80     // 计算每个小格子的顶点坐标并压入数组中
 81     // fill in vertices for grid, note numTilesX+1 * numTilesY+1...
 82     osg::Vec3Array* coords = new osg::Vec3Array;
 83     int iy;
 84     for(iy=0;iy<=numTilesY;++iy)
 85     {
 86         for(int ix=0;ix<=numTilesX;++ix)
 87         {
 88             coords->push_back(v000+dx*(float)ix+dy*(float)iy);
 89         }
 90     }
 91    
 92     // 设置颜色的数组,当前为黑白色两种颜色
 93     //Just two colours - black and white.
 94     osg::Vec4Array* colors = new osg::Vec4Array;
 95     colors->push_back(osg::Vec4(1.0f,1.0f,1.0f,1.0f)); // white
 96     colors->push_back(osg::Vec4(0.0f,0.0f,0.0f,1.0f)); // black
 97     int numColors=colors->size();
 98    
 99     // 设置绘制四边形的顶点索引与每个四边形的颜色
100     int numIndicesPerRow=numTilesX+1;
101     osg::UByteArray* coordIndices = new osg::UByteArray; // assumes we are using less than 256 points...
102     osg::UByteArray* colorIndices = new osg::UByteArray;
103     for(iy=0;iy<numTilesY;++iy)
104     {
105         for(int ix=0;ix<numTilesX;++ix)
106         {
107             // four vertices per quad.
108             coordIndices->push_back(ix    +(iy+1)*numIndicesPerRow);
109             coordIndices->push_back(ix    +iy*numIndicesPerRow);
110             coordIndices->push_back((ix+1)+iy*numIndicesPerRow);
111             coordIndices->push_back((ix+1)+(iy+1)*numIndicesPerRow);
112            
113             // one color per quad
114             colorIndices->push_back((ix+iy)%numColors);
115         }
116     }
117    
118 
119     // 设置法线向量
120     // set up a single normal
121     osg::Vec3Array* normals = new osg::Vec3Array;
122     normals->push_back(osg::Vec3(0.0f,0.0f,1.0f));
123    
124 
125     // 设置顶点坐标数组
126     osg::Geometry* geom = new osg::Geometry;
127     geom->setVertexArray(coords);
128     geom->setVertexIndices(coordIndices);
129    
130     // 设置颜色数组
131     geom->setColorArray(colors);
132     geom->setColorIndices(colorIndices);
133     geom->setColorBinding(osg::Geometry::BIND_PER_PRIMITIVE);
134    
135     // 设置法线数组
136     geom->setNormalArray(normals);
137     geom->setNormalBinding(osg::Geometry::BIND_OVERALL);
138    
139     // 需要绘制什么形状的图形,当前为四边形
140     geom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::QUADS,0,coordIndices->size()));
141    
142     // 将绘制的的图形添加到osg::Geode中
143     osg::Geode* geode = new osg::Geode;
144     geode->addDrawable(geom);
145    
146     return geode;
147 }
148 
149 // 创建移动的模型,中心点在center,半径为radius
150 osg::Node* createMovingModel(const osg::Vec3& center, float radius)
151 {
152     float animationLength = 10.0f;
153 
154     // 创建动画路径,中心点在center,半径为radius,循环时间为10.0f
155     osg::AnimationPath* animationPath = createAnimationPath(center,radius,animationLength);
156 
157     osg::Group* model = new osg::Group;
158 
159     // 从外部读取一个模型glider.osg作为飞行的模型
160     osg::Node* glider = osgDB::readNodeFile("glider.osg");
161     if (glider)
162     {
163         // 根据模型的包围球来计算矩阵
164         // 平移到原点,缩放模型,然后沿z轴旋转-90度
165         const osg::BoundingSphere& bs = glider->getBound();
166 
167         float size = radius/bs.radius()*0.3f;
168         osg::MatrixTransform* positioned = new osg::MatrixTransform;
169         //设置这个值在对象生命周期内为静态的不可改变的数值,或者动态的在对象生命周期内变化的值
170         positioned->setDataVariance(osg::Object::STATIC);
171         //设置转移矩阵参数
172         positioned->setMatrix(osg::Matrix::translate(-bs.center())*         /*表示平移物体,注意osg的坐标系是z轴是向上的*/
173                                      osg::Matrix::scale(size,size,size)*    /*x,y,z轴的放缩比例*/
174                                      osg::Matrix::rotate(osg::inDegrees(-90.0f),0.0f,0.0f,1.0f));   /*x,y,z轴的旋转角度*/
175    
176         positioned->addChild(glider);
177    
178         // 设置动画路径的回调函数,使在渲染循环中不停的沿动画路径移动,设置坐标系变换
179         osg::PositionAttitudeTransform* xform = new osg::PositionAttitudeTransform;   
180         xform->setUpdateCallback(new osg::AnimationPathCallback(animationPath,0.0,1.0));
181         xform->addChild(positioned);
182 
183         model->addChild(xform);
184     }
185 
186     // 从外部读取一个模型cessna.osg
187     // 操作同上,设置动画路径的回调函数,使在渲染的循环中不停的沿动画路径移动
188     osg::Node* cessna = osgDB::readNodeFile("cessna.osg");
189     if (cessna)
190     {
191         const osg::BoundingSphere& bs = cessna->getBound();
192 
193         float size = radius/bs.radius()*0.3f;
194         osg::MatrixTransform* positioned = new osg::MatrixTransform;
195         positioned->setDataVariance(osg::Object::STATIC);
196         positioned->setMatrix(osg::Matrix::translate(-bs.center())*
197                                      osg::Matrix::scale(size,size,size)*
198                                      osg::Matrix::rotate(osg::inDegrees(180.0f),0.0f,0.0f,1.0f));
199    
200         positioned->addChild(cessna);
201    
202         osg::MatrixTransform* xform = new osg::MatrixTransform;
203         xform->setUpdateCallback(new osg::AnimationPathCallback(animationPath,0.0f,2.0));
204         xform->addChild(positioned);
205 
206         model->addChild(xform);
207     }
208    
209     return model;
210 }
211 
212 // 创建覆盖图,根据覆盖的实现技术来设置
213 osg::Node* createModel(bool overlay, osgSim::OverlayNode::OverlayTechnique technique)
214 {
215     osg::Vec3 center(0.0f,0.0f,0.0f);
216     float radius = 100.0f;
217 
218     osg::Group* root = new osg::Group;
219 
220     // 创建底板与飞行的模型
221     float baseHeight = center.z()-radius*0.5;
222     osg::Node* baseModel = createBase(osg::Vec3(center.x(), center.y(), baseHeight),radius);
223     osg::Node* movingModel = createMovingModel(center,radius*0.8f);
224 
225     // 是否设置覆盖图
226     if (overlay)
227     {
228         // 根据命令行传入的参数来设置
229         osgSim::OverlayNode* overlayNode = new osgSim::OverlayNode(technique);
230         overlayNode->setContinuousUpdate(true);
231         // 需要设置的覆盖的图的模型为飞行的模型,当前为从外部加载的模型
232         overlayNode->setOverlaySubgraph(movingModel);
233         // 设置覆盖图距离底板的高度
234         overlayNode->setOverlayBaseHeight(baseHeight-0.01);
235         overlayNode->addChild(baseModel);
236         // 将覆盖图的节点加入到根节点中
237         root->addChild(overlayNode);
238     }
239     else
240     {
241         // 不设置覆盖图
242         root->addChild(baseModel);
243     }
244    
245     root->addChild(movingModel);
246 
247     return root;
248 }
249 
250 
251 int main( int argc, char **argv )
252 {
253     // 是否使用覆盖模拟
254     bool overlay = false;
255     // 使用命令行参数实例化osg::ArgumentParset类,方便以后的操作
256     osg::ArgumentParser arguments(&argc,argv);
257     while (arguments.read("--overlay")) overlay = true;
258    
259     // 获得覆盖节点采用哪种技术实现,提供三种实现技术
260     osgSim::OverlayNode::OverlayTechnique technique = osgSim::OverlayNode::OBJECT_DEPENDENT_WITH_ORTHOGRAPHIC_OVERLAY;
261     while (arguments.read("--object")) { technique = osgSim::OverlayNode::OBJECT_DEPENDENT_WITH_ORTHOGRAPHIC_OVERLAY; overlay=true; }
262     while (arguments.read("--ortho") || arguments.read("--orthographic")) { technique = osgSim::OverlayNode::VIEW_DEPENDENT_WITH_ORTHOGRAPHIC_OVERLAY; overlay=true; }
263     while (arguments.read("--persp") || arguments.read("--perspective")) { technique = osgSim::OverlayNode::VIEW_DEPENDENT_WITH_PERSPECTIVE_OVERLAY; overlay=true; }
264    
265 
266     // initialize the viewer.
267     osgViewer::Viewer viewer;
268 
269     // 创建底板与飞行的物体,飞行物体通过外部读取
270     // load the nodes from the commandline arguments.
271     osg::Node* model = createModel(overlay, technique);
272     if (!model)
273     {
274         return 1;
275     }
276    
277     // 创建一个osg::MatrixTransform并设置场景沿x轴旋转30度
278     // tilt the scene so the default eye position is looking down on the model.
279     osg::MatrixTransform* rootnode = new osg::MatrixTransform;
280     rootnode->setMatrix(osg::Matrix::rotate(osg::inDegrees(30.0f),1.0f,0.0f,0.0f));
281     rootnode->addChild(model);
282 
283     /// 对整个场景进行优化
284     // run optimization over the scene graph
285     osgUtil::Optimizer optimzer;
286     optimzer.optimize(rootnode);
287     
288     // 将整个节点设置到场景中进行渲染
289     // set the scene to render
290     viewer.setSceneData(rootnode);
291 
292     // 设置相机的操作器,当前使用跟踪球的模式进行操作
293     viewer.setCameraManipulator(new osgGA::TrackballManipulator());
294 
295     // viewer.setUpViewOnSingleScreen(1);
296 
297     // 提供两中渲染的循环模式
298     // 第一中采用老式的模式
299     // 第二中采用封装模式
300 #if 0
301 
302     // use of custom simulation time.
303    
304     viewer.realize();
305    
306     double simulationTime = 0.0;
307    
308     while (!viewer.done())
309     {
310         viewer.frame(simulationTime);
311         simulationTime += 0.001;
312     }
313    
314     return 0;
315 #else
316 
317     // normal viewer usage.
318     return viewer.run();
319 
320 #endif
321 }
View Code

 

posted @ 2015-07-02 15:37  flylong0204  阅读(491)  评论(0编辑  收藏  举报