流量控制与RateLimiter

一.背景
  如何提高系统的稳定性,简单来说除了加机器外就是服务降级、限流。加机器就是常说的分布式,从整个架构的稳定性角度看,一般SOA每个接口的所能提供的单位时间服务能力是有上限。假如超过服务能力,一般会造成整个接口服务停顿,或者应用挂了,将延迟传递给服务调用方造成整个系统的服务能力丧失。要是对外的公开 API 接口服务,Rate limiting 应该是一个必备的功能,否极有可能被恶意调用导致服务宕掉,所以限流是必要的。这里本文就整理下常见的限流原理及方案。
  流量控制更专业的叫法是:流量整形(traffic shaping),典型作用是限制流出某一网络的某一连接的流量与突发,使这类报文以比较均匀的速度向外发送。

二.常用方法
  令牌桶(Token Bucket)和漏桶(leaky bucket)是 最常用的两种限流的算法。
1.漏桶算法
  漏桶(Leaky Bucket)算法思路很简单,水(请求)先进入到漏桶里,漏桶以一定的速度出水(接口有响应速率),当水流入速度过大会直接溢出(访问频率超过接口响应速率),然后就拒绝请求,可以看出漏桶算法能强行限制数据的传输速率.示意图如下:

  可见这里有两个变量,一个是桶的大小,支持流量突发增多时可以存多少的水(burst),另一个是水桶漏洞的大小(rate),在某些情况下,漏桶算法不能够有效地使用网络资源。因为漏桶的漏出速率是固定的参数,所以,即使网络中不存在资源冲突(没有发生拥塞),漏桶算法也不能使某一个单独的流突发到端口速率。因此,漏桶算法对于存在突发特性的流量来说缺乏效率。而令牌桶算法则能够满足这些具有突发特性的流量。通常,漏桶算法与令牌桶算法可以结合起来为网络流量提供更大的控制。
2.令牌桶算法

  令牌桶算法(Token Bucket)和 Leaky Bucket 效果一样但方向相反的算法,更加容易理解.随着时间流逝,系统会按恒定1/QPS时间间隔(如果QPS=100,则间隔是10ms)往桶里加入Token(想象和漏洞漏水相反,有个水龙头在不断的加水),如果桶已经满了就不再加了.新请求来临时,会各自拿走一个Token,如果没有Token可拿了就阻塞或者拒绝服务.
令牌桶的另外一个好处是可以方便的改变速度. 一旦需要提高速率,则按需提高放入桶中的令牌的速率. 一般会定时(比如100毫秒)往桶中增加一定数量的令牌, 有些变种算法则实时的计算应该增加的令牌的数量。

 

三.guava RateLimiter
1.RateLimiter 简介
  Google开源工具包Guava提供了限流工具类RateLimiter,该类基于令牌桶算法(Token Bucket)来完成限流,非常易于使用.RateLimiter经常用于限制对一些物理资源或者逻辑资源的访问速率.它支持两种获取permits接口,一种是如果拿不到立刻返回false,一种会阻塞等待一段时间看能不能拿到。
RateLimiter经常用于限制对一些物理资源或者逻辑资源的访问速率。与Semaphore 相比,Semaphore 限制了并发访问的数量而不是使用速率。(注意尽管并发性和速率是紧密相关的,比如参考Little定律

  通过设置许可证的速率来定义RateLimiter。在默认配置下,许可证会在固定的速率下被分配,速率单位是每秒多少个许可证。为了确保维护配置的速率,许可会被平稳地分配,许可之间的延迟会做调整。
  可能存在配置一个拥有预热期的RateLimiter 的情况,在这段时间内,每秒分配的许可数会稳定地增长直到达到稳定的速率。

  有一点很重要,那就是请求的许可数从来不会影响到请求本身的限制(调用acquire(1) 和调用acquire(1000) 将得到相同的限制效果,如果存在这样的调用的话),但会影响下一次请求的限制,也就是说,如果一个高开销的任务抵达一个空闲的RateLimiter,它会被马上许可,但是下一个请求会经历额外的限制,从而来偿付高开销任务。注意:RateLimiter 并不提供公平性的保证。
2.code
  我们要实现一个基于速率的单机流控框架的时候,RateLimiter 是一个完善的核心组件,下面是demo。

package com.bijian.test;

import java.util.concurrent.ConcurrentMap;

import com.google.common.collect.Maps;
import com.google.common.util.concurrent.RateLimiter;

public class TrafficShaper {

    //key-value(serverice,qps)  
    private static final ConcurrentMap<String, Double> resourceMap = Maps.newConcurrentMap();
    //userkey-service limiter  
    private static final ConcurrentMap<String, RateLimiter> userresourceLimiterMap = Maps.newConcurrentMap();
    static {
        //init  
        resourceMap.put("aaa", 50.0);
    }

    public static void updateResourceQps(String resource, double qps) {
        resourceMap.put(resource, qps);
    }

    public static void removeResource(String resource) {
        resourceMap.remove(resource);
    }

    public static int enter(String resource, String userkey) {
        long t1 = System.currentTimeMillis();
        double qps = resourceMap.get(resource);
        //服务不限流  
        if (qps == 0.0) {
            return 0;
        }
        String keyser = resource + userkey;
        RateLimiter keyserlimiter = userresourceLimiterMap.get(keyser);
        //if null,new limiter   
        if (keyserlimiter == null) {
            keyserlimiter = RateLimiter.create(qps);
            RateLimiter putByOtherThread = userresourceLimiterMap.putIfAbsent(keyser, keyserlimiter);
            if (putByOtherThread != null) {
                keyserlimiter = putByOtherThread;
            }
            keyserlimiter.setRate(qps);
        }

        //tryacquire  
        if (!keyserlimiter.tryAcquire()) {
            System.out.println("use:" + (System.currentTimeMillis() - t1) + "ms;" + resource
                    + "  visited  too frequently  by key:" + userkey);

            return 99;
        } else {
            System.out.println("use:" + (System.currentTimeMillis() - t1) + "ms;");
            return 0;
        }

    }

    public static void main(String[] args) throws InterruptedException {
        
        int i = 0;
        while (true) {
            i++;
            long t2 = System.currentTimeMillis();
            System.out.println(t2 + ":qq:" + i);

            int res = TrafficShaper.enter("aaa", "qq");
            System.out.println((System.currentTimeMillis() - t2) + ":qq:" + i);
            if (res == 99) {
                i = 0;
                Thread.sleep(1000);
            }
        }
    }
}

  简单说明下,这里核心方法是enter,入参是两个,分别是服务名称跟用户key.预期效果就是开放API对于用户来说某个服务只允许调用最大次数。
  运行结果:

1498910834048:qq:48
use:0ms;
0:qq:48
1498910834048:qq:49
use:0ms;
0:qq:49
1498910834048:qq:50
use:0ms;
0:qq:50
1498910834048:qq:51
use:0ms;aaa  visited  too frequently  by key:qq
0:qq:51
1498910835049:qq:1
use:0ms;
0:qq:1
1498910835049:qq:2
use:0ms;
0:qq:2

3.API接口

4.源码分析
  RateLimiter主要源码分析
  两个create函数用于构建不同形式的RateLimiter。

public static RateLimiter create(double permitsPerSecond)  
用于创建SmoothBursty类型的RateLimiter  
public static RateLimiter create(double permitsPerSecond,long warmupPeriod,TimeUnit unit)  
用于创建SmoothWarmingUp类型的RateLimiter.API注释上比较长,如下:  

  根据指定的稳定吞吐率和预热期来创建RateLimiter,这里的吞吐率是指每秒多少许可数(通常是指QPS,每秒多少查询),在这段预热时间内,RateLimiter每秒分配的许可数会平稳地增长直到预热期结束时达到其最大速率(只要存在足够请求数来使其饱和)。同样地,如果RateLimiter 在warmupPeriod时间内闲置不用,它将会逐步地返回冷却状态。也就是说,它会像它第一次被创建般经历同样的预热期。返回的RateLimiter 主要用于那些需要预热期的资源,这些资源实际上满足了请求(比如一个远程服务),而不是在稳定(最大)的速率下可以立即被访问的资源。返回的RateLimiter 在冷却状态下启动(即预热期将会紧跟着发生),并且如果被长期闲置不用,它将回到冷却状态。

  下面以acquire为例子,看下源码的实现。

/**
   * Acquires a single permit from this {@code RateLimiter}, blocking until the
   * request can be granted. Tells the amount of time slept, if any.
   *
   * <p>This method is equivalent to {@code acquire(1)}.
   *
   * @return time spent sleeping to enforce rate, in seconds; 0.0 if not rate-limited
   * @since 16.0 (present in 13.0 with {@code void} return type})
   */
  public double acquire() {
    return acquire(1);
  }

  /**
   * Acquires the given number of permits from this {@code RateLimiter}, blocking until the
   * request can be granted. Tells the amount of time slept, if any.
   *
   * @param permits the number of permits to acquire
   * @return time spent sleeping to enforce rate, in seconds; 0.0 if not rate-limited
   * @throws IllegalArgumentException if the requested number of permits is negative or zero
   * @since 16.0 (present in 13.0 with {@code void} return type})
   */
  public double acquire(int permits) {
    long microsToWait = reserve(permits);
    stopwatch.sleepMicrosUninterruptibly(microsToWait);
    return 1.0 * microsToWait / SECONDS.toMicros(1L);
  }

  /**
   * Reserves the given number of permits from this {@code RateLimiter} for future use, returning
   * the number of microseconds until the reservation can be consumed.
   *
   * @return time in microseconds to wait until the resource can be acquired, never negative
   */
  final long reserve(int permits) {
    checkPermits(permits);
    synchronized (mutex()) {
      return reserveAndGetWaitLength(permits, stopwatch.readMicros());
    }
  }
/**
   * Reserves next ticket and returns the wait time that the caller must wait for.
   *
   * @return the required wait time, never negative
   */
  final long reserveAndGetWaitLength(int permits, long nowMicros) {
    long momentAvailable = reserveEarliestAvailable(permits, nowMicros);
    return max(momentAvailable - nowMicros, 0);
  }
/**
   * Reserves the requested number of permits and returns the time that those permits can be used
   * (with one caveat).
     *
   * @return the time that the permits may be used, or, if the permits may be used immediately, an
   *     arbitrary past or present time
     */
  abstract long reserveEarliestAvailable(int permits, long nowMicros);

  这是个抽象接口,我们看下具体实现类SmoothRateLimiter:

  @Override
  final long reserveEarliestAvailable(int requiredPermits, long nowMicros) {
    resync(nowMicros);  //补充令牌
    long returnValue = nextFreeTicketMicros;
    double storedPermitsToSpend = min(requiredPermits, this.storedPermits); //本次请求消耗的令牌数
    double freshPermits = requiredPermits - storedPermitsToSpend;

    long waitMicros = storedPermitsToWaitTime(this.storedPermits, storedPermitsToSpend)
        + (long) (freshPermits * stableIntervalMicros);

    this.nextFreeTicketMicros = nextFreeTicketMicros + waitMicros; //计算下次可用时间
    this.storedPermits -= storedPermitsToSpend; //消耗令牌
    return returnValue;
  }
/**
   * Translates a specified portion of our currently stored permits which we want to
   * spend/acquire, into a throttling time. Conceptually, this evaluates the integral
   * of the underlying function we use, for the range of
   * [(storedPermits - permitsToTake), storedPermits].
   *
   * <p>This always holds: {@code 0 <= permitsToTake <= storedPermits}
   */
  abstract long storedPermitsToWaitTime(double storedPermits, double permitsToTake);

  private void resync(long nowMicros) {  //补充令牌数,及更新下次可用令牌毫秒数
    // if nextFreeTicket is in the past, resync to now
    if (nowMicros > nextFreeTicketMicros) {
      storedPermits = min(maxPermits,
          storedPermits + (nowMicros - nextFreeTicketMicros) / stableIntervalMicros);
      nextFreeTicketMicros = nowMicros;
    }
  }

  对于storedPermitsToWaitTime,这是一个抽象接口。

  RateLimiter实际上由两种实现策略,其实现分别见SmoothBursty和SmoothWarmingUp。

  a.SmoothBursty

  SmoothBursty使用storedPermits不需要额外等待时间。并且默认maxBurstSeconds为1,因此maxPermits为permitsPerSecond,即最多可以存储1秒的剩余令牌,比如QPS=4,则maxPermits=4。

/**
   * This implements a "bursty" RateLimiter, where storedPermits are translated to
   * zero throttling. The maximum number of permits that can be saved (when the RateLimiter is
   * unused) is defined in terms of time, in this sense: if a RateLimiter is 2qps, and this
   * time is specified as 10 seconds, we can save up to 2 * 10 = 20 permits. 
   */
  static final class SmoothBursty extends SmoothRateLimiter {
    /** The work (permits) of how many seconds can be saved up if this RateLimiter is unused? */
    final double maxBurstSeconds; 
    
    SmoothBursty(SleepingStopwatch stopwatch, double maxBurstSeconds) {
      super(stopwatch);
      this.maxBurstSeconds = maxBurstSeconds;
    }
  
    @Override
    void doSetRate(double permitsPerSecond, double stableIntervalMicros) {
      double oldMaxPermits = this.maxPermits;
      maxPermits = maxBurstSeconds * permitsPerSecond;
      if (oldMaxPermits == Double.POSITIVE_INFINITY) {
        // if we don't special-case this, we would get storedPermits == NaN, below
        storedPermits = maxPermits;
      } else {
        storedPermits = (oldMaxPermits == 0.0)
            ? 0.0 // initial state
            : storedPermits * maxPermits / oldMaxPermits;
      }
    }
  
    @Override
    long storedPermitsToWaitTime(double storedPermits, double permitsToTake) {
      return 0L;
    }
  }

  RateLimiter 允许某次请求拿走超出剩余令牌数的令牌,但是下一次请求将为此付出代价,一直等到令牌亏空补上,并且桶中有足够本次请求使用的令牌为止。这里面就涉及到一个权衡,是让前一次请求干等到令牌够用才走掉呢,还是让它先走掉后面的请求等一等呢?Guava 的设计者选择的是后者,先把眼前的活干了,后面的事后面再说。这里我看网上举了例子便于理解,以每秒qps=4,头两步消耗4个,剩余存储4个。在第三步的时候之前存储了4个,加上本次的共8个,但是本次请求了10个,所以透支了2个,第四次请求的时候,需要补上2个,等待0.5秒。
  (1).t=0,这时候storedPermits=0,请求1个令牌,等待时间=0;
  (2).t=1,这时候storedPermits=3,请求3个令牌,等待时间=0;
  (3).t=2,这时候storedPermits=4,请求10个令牌,等待时间=0,超前使用了2个令牌;
  (4).t=3,这时候storedPermits=0,请求1个令牌,等待时间=0.5;
  b.SmoothWarmingUp

  static final class SmoothWarmingUp extends SmoothRateLimiter {
    private final long warmupPeriodMicros;
    /**
     * The slope of the line from the stable interval (when permits == 0), to the cold interval
     * (when permits == maxPermits)
     */
    private double slope;
    private double halfPermits;
  
    SmoothWarmingUp(SleepingStopwatch stopwatch, long warmupPeriod, TimeUnit timeUnit) {
      super(stopwatch);
      this.warmupPeriodMicros = timeUnit.toMicros(warmupPeriod);
    }
  
    @Override
    void doSetRate(double permitsPerSecond, double stableIntervalMicros) {
      double oldMaxPermits = maxPermits;
      maxPermits = warmupPeriodMicros / stableIntervalMicros;
      halfPermits = maxPermits / 2.0;
      // Stable interval is x, cold is 3x, so on average it's 2x. Double the time -> halve the rate
      double coldIntervalMicros = stableIntervalMicros * 3.0;
      slope = (coldIntervalMicros - stableIntervalMicros) / halfPermits;
      if (oldMaxPermits == Double.POSITIVE_INFINITY) {
        // if we don't special-case this, we would get storedPermits == NaN, below
        storedPermits = 0.0;
      } else {
        storedPermits = (oldMaxPermits == 0.0)
            ? maxPermits // initial state is cold
            : storedPermits * maxPermits / oldMaxPermits;
      }
    }
  
    @Override
    long storedPermitsToWaitTime(double storedPermits, double permitsToTake) {
      double availablePermitsAboveHalf = storedPermits - halfPermits;
      long micros = 0;
      // measuring the integral on the right part of the function (the climbing line)
      if (availablePermitsAboveHalf > 0.0) {
        double permitsAboveHalfToTake = min(availablePermitsAboveHalf, permitsToTake);
        micros = (long) (permitsAboveHalfToTake * (permitsToTime(availablePermitsAboveHalf)
            + permitsToTime(availablePermitsAboveHalf - permitsAboveHalfToTake)) / 2.0);
        permitsToTake -= permitsAboveHalfToTake;
      }
      // measuring the integral on the left part of the function (the horizontal line)
      micros += (stableIntervalMicros * permitsToTake);
      return micros;
    }
  
    private double permitsToTime(double permits) {
      return stableIntervalMicros + permits * slope;
    }
  }

  maxPermits等于热身(warmup)期间能产生的令牌数,比如QPS=4,warmup为2秒,则maxPermits=8.halfPermits为maxPermits的一半。

  这个图还不是很理解,对比上一个实现方式,就是不能透支,需要的资源就等待。这里待测试验证。

 

四 其他常见实现方式
1.Proxy 层的实现,针对部分 URL 或者 API 接口进行访问频率限制
Nginx 模块

limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;
server {
location /search/ {
limit_req zone=one burst=5;
}

  详细参见:ngx_http_limit_req_module

Haproxy 提供的功能
  详细参见:Haproxy Rate limit 模块

2.基于Redis 功能的实现
  这个在 Redis 官方文档有非常详细的实现。一般适用于所有类型的应用,比如PHP、Python 等等。redis的实现方式可以支持分布式服务的访问频率的集中控制。Redis的频率限制实现方式还适用于在应用中无法状态保存状态的场景。

  参见:Redis INCR rate limiter

 

文章来源:http://blog.csdn.net/bohu83/article/details/51596346

posted on 2017-07-01 20:43  bijian1013  阅读(993)  评论(0)    收藏  举报

导航