直线段与圆弧光栅化的计算方法

直线段光栅化

数值微分法(DDA算法)

计算方法:

\(\Delta\)x = \(x_2-x_1\)\(\Delta y=y_2-y_1\)\(k=\frac{\Delta y}{\Delta x}\)

当$ -1≤k≤1 $ 时:

\[\begin{array}{l} \left\{\begin{matrix} x_{i+1} = x_i + 1 \quad \\ y_{i+1} = y_i + k \quad \\ \end{matrix}\right. \end{array} \]

当 $ k>1 $ 时:

\[\begin{array}{l} \left\{\begin{matrix} x_{i+1} = x_i + \frac{1}{k} \quad \\ y_{i+1} = y_i + 1 \quad \\ \end{matrix}\right. \end{array} \]

当$ k<-1 $ 时:

\[\begin{array}{l} \left\{\begin{matrix} x_{i+1} = x_i - \frac{1}{k} \quad \\ y_{i+1} = y_i - 1 \quad \\ \end{matrix}\right. \end{array} \]

算法评价:

  • 比直接使用\(y=kx+b\)更快
  • 耗时(增加了浮点数运算,除法运算,取整操作等,不利于硬件实现)

\(Bresenham\)划线算法(重点掌握)

计算方法:

\(\Delta\)x = \(x_2-x_1\)\(\Delta y=y_2-y_1\)\(k=\frac{\Delta y}{\Delta x}\) \(d_i=\Delta x(s_i-t_i)\)

  • 当$ 0<k≤1 $ 时:

\(d_0 = 2dy -dx\)
绘制点的递推公式:

\[\begin{array}{l} \left\{\begin{matrix} x_{i+1} = x_i + 1 \quad \\ y_{i+1} = y_i + \Delta y \quad \begin{array}{l} \left\{\begin{matrix} \Delta y = 0 \quad d_i<0 \\ \Delta y = 1 \quad d_i≥0 \\ \end{matrix}\right. \end{array} \\ \end{matrix}\right. \end{array} \\ \]

误差项递推公式:

\[d_{i+1}= \begin{array}{l} \left\{\begin{matrix} d_i + 2(dy-dx) \quad d_i≥0\\ d_i + 2dy \quad d_i<0 \end{matrix}\right. \end{array} \]

  • 当 $ 1<k $ 时:

    \(d_0 = 2dx -dy\)
    绘制点的递推公式:

    \[\begin{array}{l} \left\{\begin{matrix} y_{i+1} = y_i + 1 \quad \\ x_{i+1} = x_i + \Delta x \quad \begin{array}{l} \left\{\begin{matrix} \Delta y = 0 \quad d_i<0 \\ \Delta y = 1 \quad d_i≥0 \\ \end{matrix}\right. \end{array} \\ \end{matrix}\right. \end{array} \]

    误差项递推公式:

    \[d_{i+1}= \begin{array}{l} \left\{\begin{matrix} d_i + 2(dx-dy) \quad d_i≥0\\ d_i + 2dx \quad d_i<0 \end{matrix}\right. \end{array} \]

    • 当 $ 1<k $ 时:

      \(d_0 = 2dx -dy\)
      绘制点的递推公式:

      \[\begin{array}{l} \left\{\begin{matrix} y_{i+1} = y_i + 1 \quad \\ x_{i+1} = x_i + \Delta x \quad \begin{array}{l} \left\{\begin{matrix} \Delta y = 0 \quad d_i<0 \\ \Delta y = 1 \quad d_i≥0 \\ \end{matrix}\right. \end{array} \\ \end{matrix}\right. \end{array} \]

      误差项递推公式:

      \[d_{i+1}= \begin{array}{l} \left\{\begin{matrix} d_i + 2(dx-dy) \quad d_i≥0\\ d_i + 2dx \quad d_i<0 \end{matrix}\right. \end{array} \]

注意: 感觉期末只可能考察斜率在 \(0\)~\(1\)之间且起点从原点开始的

若dx > 0, dy > 0, 0< m < 1:

xi = x1, yi = y1

第一项: pi = 2dy -dx

若pi < 0: pi = pi + 2dy, yi = yi

若pi > 0: pi = pi + 2dy - 2dx, yi = yi + 1

xi = xi + 1

输出: (xi, yi)

若dx > 0, dy > 0, m > 1:

xi = x1, yi = y1

第一项: pi = 2dx -dy

若pi < 0: pi = pi + 2dx, xi = xi

若pi > 0: pi = pi + 2dx - 2dy, xi = xi + 1

yi = yi + 1

输出: (xi, yi)

若dx > 0, dy < 0, 0< m < 1:

xi = x1, yi = -y1

第一项: pi = 2dy -dx

若pi < 0: pi = pi + 2dy, yi = yi

若pi > 0: pi = pi + 2dy - 2dx, yi = yi + 1

xi = xi + 1

输出: (xi, -yi)

若dx > 0, dy < 0, m > 1:

xi = x1, yi = -y1

第一项: pi = 2dx -dy

若pi < 0: pi = pi + 2dx, xi = xi

若pi > 0: pi = pi + 2dx - 2dy, xi = xi + 1

yi = yi + 1

输出: (xi, -yi)

若dx < 0, dy > 0, 0< m < 1:

xi = -x1, yi = y1

第一项: pi = 2dy -dx

若pi < 0: pi = pi + 2dy, yi = yi

若pi > 0: pi = pi + 2dy - 2dx, yi = yi + 1

xi = xi + 1

输出: (-xi, yi)

若dx < 0, dy > 0, m > 1:

xi = -x1, yi = y1

第一项: pi = 2dx -dy

若pi < 0: pi = pi + 2dx, xi = xi

若pi > 0: pi = pi + 2dx - 2dy, xi = xi + 1

yi = yi + 1

输出: (-xi, yi)

若dx < 0, dy < 0, 0< m < 1:

xi = -x1, yi = -y1

第一项: pi = 2dy -dx

若pi < 0: pi = pi + 2dy, yi = yi

若pi > 0: pi = pi + 2dy - 2dx, yi = yi + 1

xi = xi + 1

输出: (-xi, -yi)

若dx < 0, dy < 0, m > 1:

xi = -x1, yi = -y1

第一项: pi = 2dx -dy

若pi < 0: pi = pi + 2dx, xi = xi

若pi > 0: pi = pi + 2dx - 2dy, xi = xi + 1

yi = yi + 1

输出: (-xi, -yi)

image

评价方法:

  • 只有整数运算,不含乘除法
  • 只有加法和乘2运算,效率高

中点划线算法(重点掌握)

计算方法:(假定\(0≤k≤1\)\(x\)是最大位移方向

\(d_i = F(M) = y_i+0.5-k(x_i+1)-b\)

绘制点的递推公式:

\[\begin{array}{l} \left\{\begin{matrix} x_{i+1} = x_i + 1\\ y_{i+1} = \begin{array}{l} \left\{\begin{matrix} y_{i} + 1 \quad d<0 \\ y_{i} \quad d≥0 \end{matrix}\right. \end{array} \end{matrix}\right. \end{array} \]

误差项递推公式:

\(d_1 = 0.5 - k\)

\[d_{i+1}= \begin{array}{l} \left\{\begin{matrix} d_i + 1 - k \quad d_i<0\\ d_i - k \quad d_i≥0 \end{matrix}\right. \end{array} \]

改进的计算方法:(假定\(0≤k≤1\)\(x\)是最大位移方向

\(2d\Delta x\) 代替 \(d\) ,令\(D=2d\Delta x\)

绘制点的递推公式:

\[\begin{array}{l} \left\{\begin{matrix} x_{i+1} = x_i + 1\\ y_{i+1} = \begin{array}{l} \left\{\begin{matrix} y_{i} + 1 \quad d<0 \\ y_{i} \quad d≥0 \end{matrix}\right. \end{array} \end{matrix}\right. \end{array} \]

误差项递推公式:

\(D_1 = \Delta x - 2\Delta y\)

\[D_{i+1}= \begin{array}{l} \left\{\begin{matrix} D_i + 2\Delta x - 2\Delta y \quad D_i<0\\ D_i- 2\Delta y \quad D_i≥0 \end{matrix}\right. \end{array} \]

圆弧光栅化

八分法画圆

image

中点画圆算法

计算方法:

  • 误差项

\[d = F(x_M,y_M)=F(x_i+1,y_i-0.5)=(x+1)^2+(y_i-0.5)^2-R^2 \]

  • \(d<0\)时,下一点取\(Pu(x_i+1,y_i)\)
  • \(d_i≥0\)时,下一点取\(Pd(x_i+1,y_i-1)\)

\(初项:d_0 =1.25-R\)

\[d_{i+1}= \begin{array}{l} \left\{\begin{matrix} d_i + 2x_i + 3 \quad d_i<0\\ d_i + 2(x_i-y_i) + 5 \quad d_i≥0 \end{matrix}\right. \end{array} \]

改进计算方法:

\(e=d-0.25代替d\)

\(初项:e_0 =1-R\)

\[e_{i+1}= \begin{array}{l} \left\{\begin{matrix} e_i + 2x_i + 3 \quad e_i<0\\ e_i + 2(x_i-y_i) + 5 \quad e_i≥0 \end{matrix}\right. \end{array} \]

posted @ 2022-05-15 10:49  ICE_棋  阅读(178)  评论(0)    收藏  举报