/*
*算法引入:
*树上两点的最近公共祖先;
*对于有根树的两个结点u,v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u,v的祖先且x的深度尽可能大;
*对于x来说,从u到v的路径一定经过点x;
*
*算法思想:
*Tarjan_LCA离线算法;
*Tarjan算法基于dfs的框架,对于新搜到的一个结点,首先创建由这个结点构成的集合,再对当前结点的每个子树进行搜索;
*每搜索完一棵子树,则可确定子树内的LCA询问都已解决,其他的LCA询问的结果必然在这个子树之外;
*这时把子树所形成的集合与当前结点的集合合并,并将当前结点设为这个集合的祖先;
*之后继续搜索下一棵子树,直到当前结点的所有子树搜完;
*
*这时把当前结点也设为已被检查过的,同时可以处理有关当前结点的LCA询问;
*如果有一个从当前结点到结点v的询问,且v已经被检查过;
*则由于进行的是dfs,当前结点与v的最近公共祖先一定还没有被检查;
*而这个最近公共祖先的包含v的子树一定已经搜索过了,那么这个最近公共祖先一定是v所在集合的祖先;
*
*算法步骤:
*对于每一个结点:
*(1)建立以u为代表元素的集合;
*(2)遍历与u相连的结点v,如果没有被访问过,对于v使用Tarjan_LCA算法,结束后将v的集合并入u的集合;
*(3)对于与u有关的询问(u,v),如果v被访问过,则结果就是v所在集合的代表元素;
*
*算法示例:
*HDU2586(How far away?)
*
*题目大意:
*求树上任两点间的距离;
*
*算法思想:
*先dfs一遍,求出到根节点的dis;
*对于某个询问,求u和v的lca,然后res[i]=d[u]+d[v]-2*d[lca(u,v)];
*
**/
struct node{
int to,w,next,lca;
};
int fa[maxn];
int head[maxn*2];
int qhead[maxm];//询问
bool vis[maxn];
ll d[maxn];
ll res[maxm];
node edge[N*2];
node qedge[M];//询问边
int n,m;
int cnt1,cnt2;
int findFa(int x){
return fa[x]==x?x:fa[x]=findFa(fa[x]);
}
inline void Addedge(int u,int v,int w){
edge[++cnt1].w=w, edge[cnt1].to=v, edge[cnt1].next=head[u], head[u]=cnt1;
edge[++cnt1].w=w, edge[cnt1].to=u, edge[cnt1].next=head[v], head[v]=cnt1;
}
inline void Addqedge(int u,int v){
qedge[++cnt2].to=v, qedge[cnt2].next=qhead[u], qhead[u]=cnt2;
//qedge[++cnt2].to=u, qedge[cnt2].next=qhead[v], qhead[v]=cnt2;
}
void dfs(int u,int fa,ll w){
d[u]=w;
for(int i=head[u];i!=-1;i=edge[i].next){
int v=edge[i].to;
if(v==fa) continue;
dfs(v,u,w+edge[i].w);
}
}
void Tarjan_LCA(int u){ //离线LCA算法
fa[u]=u, vis[u]=true;
for(int i=head[u];i!=-1;i=edge[i].next){
if(!vis[edge[i].to]){
Tarjan_LCA(edge[i].to);
fa[edge[i].to]=u;
}
}
for(int i=qhead[u];i!=-1;i=qedge[i].next){
if(vis[qedge[i].to]){
qedge[i].lca=findFa(qedge[i].to);
res[i]=d[u]+d[qedge[i].to]-2*d[qedge[i].lca]; //两者距离
}
}
}
void solve()
{
rep(i,0,n) fa[i]=i;
mem(head,-1); mem(qhead,-1); mem(vis,false);
cnt1=cnt2=0;
int u,v,w;
rep(i,1,n-1){
scanf("%d%d%d",&u,&v,&w);
Addedge(u,v,w);
}
while(m--){
scanf("%d%d",&u,&v);
Addqedge(u,v);
}
dfs(1,-1,0);
Tarjan_LCA(1);
}
int main(){
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
solve();
rep(i,1,m)
printf("%lld\n",res[i]);
}
}