Digital Gradient
Next: Compass Gradient Operations Up: gradient Previous: The Gradient Operator
Digital Gradient
For discrete digital images, the derivative in gradient operation
becomes the difference
Two steps for finding discrete gradient of a digital image:
- Find the difference: in the two directions:
![\begin{displaymath}g_m[m,n]=D_m[f[m,n]]=f[m+1,n]-f[m,n] \end{displaymath}]()
![\begin{displaymath}g_n[m,n]=D_n[f[m,n]]=f[m,n+1]-f[m,n] \end{displaymath}]()
- Find the magnitude and direction of the gradient vector:
![\begin{displaymath}\vert\vert g[m,n]\vert\vert=\sqrt{g^2_m[m,n]+g^2_n[m,n]},\;\;......n]\vert\vert=\vert\vert g_m\vert\vert+\vert\vert g_n\vert\vert \end{displaymath}]()
![\begin{displaymath}\angle g[m,n]=\tan^{-1} \left(\frac{g_n[m,n]}{g_m[m,n]}\right) \end{displaymath}]()
The differences in two directions
and
can be obtained by convolution with the following kernels:
- Roberts
![\begin{displaymath}\left[ \begin{array}{rr} -1 & 1 0 & 0 \end{array} \right],......\left[ \begin{array}{rr} -1 & 0 1 & 0 \end{array} \right]\end{displaymath}]()
or![\begin{displaymath}\left[ \begin{array}{rr} 0 & 1 -1 & 0 \end{array} \right],......\left[ \begin{array}{rr} 1 & 0 0 & -1 \end{array} \right]\end{displaymath}]()
- Sobel (3x3)
![\begin{displaymath}\left[ \begin{array}{rrr} -1 & 0 & 1 -2 & 0 & 2 -1 & 0 ......} -1 & -2 & -1 0 & 0 & 0 1 & 2 & 1\end{array} \right]\end{displaymath}]()
- Prewitt (3x3)
![\begin{displaymath}\left[ \begin{array}{rrr} -1 & 0 & 1 -1 & 0 & 1 -1 & 0 ......} -1 & -1 & -1 0 & 0 & 0 1 & 1 & 1\end{array} \right]\end{displaymath}]()
- Prewitt (4x4)
![\begin{displaymath}\left[ \begin{array}{rrrr} -3 & -1 & 1 & 3 -3 & -1 & 1 & 3......1 & -1 \\1 & 1 & 1 & 1 3 & 3 & 3 & 3 \end{array} \right]\end{displaymath}]()
Next: Compass Gradient Operations Up: gradient Previous: The Gradient OperatorRuye Wang 2013-11-08

![\begin{displaymath}\angle g[m,n]=\tan^{-1} \left(\frac{g_n[m,n]}{g_m[m,n]}\right) \end{displaymath}](http://images0.cnblogs.com/blog/626816/201405/041201469398840.png)
![\begin{displaymath}\left[ \begin{array}{rr} -1 & 1 0 & 0 \end{array} \right],......\left[ \begin{array}{rr} -1 & 0 1 & 0 \end{array} \right]\end{displaymath}](http://images0.cnblogs.com/blog/626816/201405/041201479551784.png)
![\begin{displaymath}\left[ \begin{array}{rr} 0 & 1 -1 & 0 \end{array} \right],......\left[ \begin{array}{rr} 1 & 0 0 & -1 \end{array} \right]\end{displaymath}](http://images0.cnblogs.com/blog/626816/201405/041201483302599.png)
![\begin{displaymath}\left[ \begin{array}{rrr} -1 & 0 & 1 -2 & 0 & 2 -1 & 0 ......} -1 & -2 & -1 0 & 0 & 0 1 & 2 & 1\end{array} \right]\end{displaymath}](http://images0.cnblogs.com/blog/626816/201405/041201486114385.png)
![\begin{displaymath}\left[ \begin{array}{rrr} -1 & 0 & 1 -1 & 0 & 1 -1 & 0 ......} -1 & -1 & -1 0 & 0 & 0 1 & 1 & 1\end{array} \right]\end{displaymath}](http://images0.cnblogs.com/blog/626816/201405/041201488774699.png)
![\begin{displaymath}\left[ \begin{array}{rrrr} -3 & -1 & 1 & 3 -3 & -1 & 1 & 3......1 & -1 \\1 & 1 & 1 & 1 3 & 3 & 3 & 3 \end{array} \right]\end{displaymath}](http://images0.cnblogs.com/blog/626816/201405/041201490959998.png)
浙公网安备 33010602011771号