目录
一、杂类
点击查看本章节
int128 库函数自定义
/** int128 库函数自定义
* 2024-08-14: https://ac.nowcoder.com/acm/contest/view-submission?submissionId=70979004&returnHomeType=1&uid=329687984
* 2024-09-17: https://qoj.ac/submission/571481
**/
using i128 = __int128;
std::ostream &operator<<(std::ostream &os, i128 n) {
if (n == 0) {
return os << 0;
}
std::string s;
while (n > 0) {
s += char('0' + n % 10);
n /= 10;
}
std::reverse(s.begin(), s.end());
return os << s;
}
i128 toi128(const std::string &s) {
i128 n = 0;
for (auto c : s) {
n = n * 10 + (c - '0');
}
return n;
}
i128 sqrti128(i128 n) {
i128 lo = 0, hi = 1E16;
while (lo < hi) {
i128 x = (lo + hi + 1) / 2;
if (x * x <= n) {
lo = x;
} else {
hi = x - 1;
}
}
return lo;
}
i128 gcd(i128 a, i128 b) {
while (b) {
a %= b;
std::swap(a, b);
}
return a;
}
常用库函数重载
using i64 = long long;
using i128 = __int128;
/** 上取整下取整
* 2023-10-15: https://codeforces.com/contest/293/submission/228297248
**/
i64 ceilDiv(i64 n, i64 m) {
if (n >= 0) {
return (n + m - 1) / m;
} else {
return n / m;
}
}
i64 floorDiv(i64 n, i64 m) {
if (n >= 0) {
return n / m;
} else {
return (n - m + 1) / m;
}
}
/** 最大值赋值
* 2023-09-30: https://codeforces.com/contest/1874/submission/226069129
**/
template<class T>
void chmax(T &a, T b) {
if (a < b) {
a = b;
}
}
/** 最大公约数
* -: -
**/
i128 gcd(i128 a, i128 b) {
return b ? gcd(b, a % b) : a;
}
/** 精确开平方
* 2024-03-02: https://qoj.ac/submission/343317
**/
i64 sqrt(i64 n) {
i64 s = std::sqrt(n);
while (s * s > n) {
s--;
}
while ((s + 1) * (s + 1) <= n) {
s++;
}
return s;
}
/** 精确开平方
* 2023-09-19: https://qoj.ac/submission/183430
**/
i64 get(i64 n) {
i64 u = std::sqrt(2.0L * n);
while (u * (u + 1) / 2 < n) {
u++;
}
while (u * (u - 1) / 2 + 1 > n) {
u--;
}
return u;
}
/** 求 Log
* 2024-07-23: https://codeforces.com/contest/1995/submission/272110180
**/
int logi(int a, int b) {
int t = 0;
i64 v = 1;
while (v < b) {
v *= a;
t++;
}
return t;
}
int llog(int a, int b) {
if (a <= b) {
int l = logi(a, b);
return (l == 0 ? 0 : std::__lg(2 * l - 1));
}
int l = logi(b, a + 1) - 1;
assert(l > 0);
return -std::__lg(l);
}
字符调整
/** 大小写转换、获取字母序
* 2024-03-16: https://qoj.ac/submission/355156
**/
void rev(std::string &s) {
int l = s.size();
for (int i = 1; i < l; i += 2) {
if (std::isupper(s[i])) {
s[i] = std::tolower(s[i]);
} else {
s[i] = std::toupper(s[i]);
}
}
}
int get(char c) {
int x;
if (std::islower(c)) {
x = c - 'a';
} else {
x = 26 + c - 'A';
}
return x;
}
二分算法
二分算法(整数域)
/** 二分算法(整数域): 前驱
* 2023-09-18: https://qoj.ac/submission/182628
**/
int lo = 1, hi = 1E9;
while (lo < hi) {
int m = (lo + hi + 1) / 2;
if (check(m)) {
lo = m;
} else {
hi = m - 1;
}
}
std::cout << lo << "\n";
/** 二分算法(整数域):后继
* 2023-09-18: https://qoj.ac/submission/182752
**/
int lo = 1, hi = n;
while (lo < hi) {
int m = (lo + hi) / 2;
if (check(m)) {
hi = m;
} else {
lo = m + 1;
}
}
std::cout << lo << "\n";
二分算法(实数域)
/** 二分算法(实数域)
* 2023-10-21: https://qoj.ac/submission/222042
**/
auto check = [&](double t) {
// write
};
double lo = 0;
double hi = 1E12;
while (hi - lo > std::max(1.0, lo) * eps) {
double x = (lo + hi) / 2;
if (check(x)) {
hi = x;
} else {
lo = x;
}
}
std::cout << lo << "\n";
/** 二分算法(实数域)
* 2023-09-15: https://qoj.ac/submission/179994
**/
using i64 = long long;
using real = long double;
constexpr real eps = 1E-7;
auto get = [&](const auto &f) {
real lo = -1E4, hi = 1E4;
while (hi - lo > 3 * eps) {
real x1 = (lo + hi - eps) / 2;
real x2 = (lo + hi + eps) / 2;
if (f(x1) > f(x2)) {
lo = x1;
} else {
hi = x2;
}
}
return f((lo + hi) / 2);
};
std::cout << get([&](real px) {
return get([&](real py) {
// write
});
}) << "\n";
二、图论与网络
点击查看代码
强连通分量缩点(SCC)
/** 强连通分量缩点(SCC)
* 2023-06-18: https://codeforces.com/contest/1835/submission/210147209
**/
struct SCC {
int n;
std::vector<std::vector<int>> adj;
std::vector<int> stk;
std::vector<int> dfn, low, bel;
int cur, cnt;
SCC() {}
SCC(int n) {
init(n);
}
void init(int n) {
this->n = n;
adj.assign(n, {});
dfn.assign(n, -1);
low.resize(n);
bel.assign(n, -1);
stk.clear();
cur = cnt = 0;
}
void addEdge(int u, int v) {
adj[u].push_back(v);
}
void dfs(int x) {
dfn[x] = low[x] = cur++;
stk.push_back(x);
for (auto y : adj[x]) {
if (dfn[y] == -1) {
dfs(y);
low[x] = std::min(low[x], low[y]);
} else if (bel[y] == -1) {
low[x] = std::min(low[x], dfn[y]);
}
}
if (dfn[x] == low[x]) {
int y;
do {
y = stk.back();
bel[y] = cnt;
stk.pop_back();
} while (y != x);
cnt++;
}
}
std::vector<int> work() {
for (int i = 0; i < n; i++) {
if (dfn[i] == -1) {
dfs(i);
}
}
return bel;
}
};
割边与割边缩点(EBCC)
/** 割边与割边缩点(EBCC)
* 2023-05-11: https://codeforces.com/contest/118/submission/205426518
**/
struct EBCC {
int n;
std::vector<std::vector<int>> adj;
std::vector<int> stk;
std::vector<int> dfn, low, bel;
int cur, cnt;
EBCC() {}
EBCC(int n) {
init(n);
}
void init(int n) {
this->n = n;
adj.assign(n, {});
dfn.assign(n, -1);
low.resize(n);
bel.assign(n, -1);
stk.clear();
cur = cnt = 0;
}
void addEdge(int u, int v) {
adj[u].push_back(v);
adj[v].push_back(u);
}
void dfs(int x, int p) {
dfn[x] = low[x] = cur++;
stk.push_back(x);
for (auto y : adj[x]) {
if (y == p) {
continue;
}
if (dfn[y] == -1) {
dfs(y, x);
low[x] = std::min(low[x], low[y]);
} else if (bel[y] == -1 && dfn[y] < dfn[x]) {
low[x] = std::min(low[x], dfn[y]);
}
}
if (dfn[x] == low[x]) {
int y;
do {
y = stk.back();
bel[y] = cnt;
stk.pop_back();
} while (y != x);
cnt++;
}
}
std::vector<int> work() {
dfs(0, -1);
return bel;
}
struct Graph {
int n;
std::vector<std::pair<int, int>> edges;
std::vector<int> siz;
std::vector<int> cnte;
};
Graph compress() {
Graph g;
g.n = cnt;
g.siz.resize(cnt);
g.cnte.resize(cnt);
for (int i = 0; i < n; i++) {
g.siz[bel[i]]++;
for (auto j : adj[i]) {
if (bel[i] < bel[j]) {
g.edges.emplace_back(bel[i], bel[j]);
} else if (i < j) {
g.cnte[bel[i]]++;
}
}
}
return g;
}
};
BlockCutTree 点双连通分量
// https://codeforces.com/contest/1763/submission/192845547
// 2023-02-09 13:22:44
struct BlockCutTree {
int n;
std::vector<std::vector<int>> adj;
std::vector<int> dfn, low, stk;
int cnt, cur;
std::vector<std::pair<int, int>> edges;
BlockCutTree() {}
BlockCutTree(int n) {
init(n);
}
void init(int n) {
this->n = n;
adj.assign(n, {});
dfn.assign(n, -1);
low.resize(n);
stk.clear();
cnt = cur = 0;
edges.clear();
}
void addEdge(int u, int v) {
adj[u].push_back(v);
adj[v].push_back(u);
}
void dfs(int x) {
stk.push_back(x);
dfn[x] = low[x] = cur++;
for (auto y : adj[x]) {
if (dfn[y] == -1) {
dfs(y);
low[x] = std::min(low[x], low[y]);
if (low[y] == dfn[x]) {
int v;
do {
v = stk.back();
stk.pop_back();
edges.emplace_back(n + cnt, v);
} while (v != y);
edges.emplace_back(x, n + cnt);
cnt++;
}
} else {
low[x] = std::min(low[x], dfn[y]);
}
}
}
std::pair<int, std::vector<std::pair<int, int>>> work() {
dfs(0);
return {cnt, edges};
}
};
二分图最大匹配-匈牙利
// 2023-10-20 10:20:41
// https://codeforces.com/contest/1592/submission/228888374
std::vector<int> yx(m, -1);
std::vector<bool> vis(n, false);
auto find = [&](auto self, int x) -> bool {
vis[x] = true;
for (auto y : adj[x]) {
if (yx[y] == -1 || (!vis[yx[y]] && self(self, yx[y]))) {
yx[y] = x;
return true;
}
}
return false;
};
for (int i = 0; i < n; i++) {
if (find(find, i)) {
matching += 1;
vis.assign(n, false);
}
}
二分图最大权匹配(MaxAssignment 基于KM)
/** 二分图最大权匹配(MaxAssignment 基于KM)
* 2022-04-10: https://atcoder.jp/contests/abc247/submissions/30867023
* 2023-09-21: https://qoj.ac/submission/184824
**/
constexpr int inf = 1E7;
template<class T>
struct MaxAssignment {
public:
T solve(int nx, int ny, std::vector<std::vector<T>> a) {
assert(0 <= nx && nx <= ny);
assert(int(a.size()) == nx);
for (int i = 0; i < nx; ++i) {
assert(int(a[i].size()) == ny);
for (auto x : a[i])
assert(x >= 0);
}
auto update = [&](int x) {
for (int y = 0; y < ny; ++y) {
if (lx[x] + ly[y] - a[x][y] < slack[y]) {
slack[y] = lx[x] + ly[y] - a[x][y];
slackx[y] = x;
}
}
};
costs.resize(nx + 1);
costs[0] = 0;
lx.assign(nx, std::numeric_limits<T>::max());
ly.assign(ny, 0);
xy.assign(nx, -1);
yx.assign(ny, -1);
slackx.resize(ny);
for (int cur = 0; cur < nx; ++cur) {
std::queue<int> que;
visx.assign(nx, false);
visy.assign(ny, false);
slack.assign(ny, std::numeric_limits<T>::max());
p.assign(nx, -1);
for (int x = 0; x < nx; ++x) {
if (xy[x] == -1) {
que.push(x);
visx[x] = true;
update(x);
}
}
int ex, ey;
bool found = false;
while (!found) {
while (!que.empty() && !found) {
auto x = que.front();
que.pop();
for (int y = 0; y < ny; ++y) {
if (a[x][y] == lx[x] + ly[y] && !visy[y]) {
if (yx[y] == -1) {
ex = x;
ey = y;
found = true;
break;
}
que.push(yx[y]);
p[yx[y]] = x;
visy[y] = visx[yx[y]] = true;
update(yx[y]);
}
}
}
if (found)
break;
T delta = std::numeric_limits<T>::max();
for (int y = 0; y < ny; ++y)
if (!visy[y])
delta = std::min(delta, slack[y]);
for (int x = 0; x < nx; ++x)
if (visx[x])
lx[x] -= delta;
for (int y = 0; y < ny; ++y) {
if (visy[y]) {
ly[y] += delta;
} else {
slack[y] -= delta;
}
}
for (int y = 0; y < ny; ++y) {
if (!visy[y] && slack[y] == 0) {
if (yx[y] == -1) {
ex = slackx[y];
ey = y;
found = true;
break;
}
que.push(yx[y]);
p[yx[y]] = slackx[y];
visy[y] = visx[yx[y]] = true;
update(yx[y]);
}
}
}
costs[cur + 1] = costs[cur];
for (int x = ex, y = ey, ty; x != -1; x = p[x], y = ty) {
costs[cur + 1] += a[x][y];
if (xy[x] != -1)
costs[cur + 1] -= a[x][xy[x]];
ty = xy[x];
xy[x] = y;
yx[y] = x;
}
}
return costs[nx];
}
std::vector<int> assignment() {
return xy;
}
std::pair<std::vector<T>, std::vector<T>> labels() {
return std::make_pair(lx, ly);
}
std::vector<T> weights() {
return costs;
}
private:
std::vector<T> lx, ly, slack, costs;
std::vector<int> xy, yx, p, slackx;
std::vector<bool> visx, visy;
};
一般图最大匹配(Graph 带花树算法)【久远】
/** 一般图最大匹配(Graph 带花树算法)
* 2024-09-13: https://qoj.ac/submission/562904
**/
struct Graph {
int n;
std::vector<std::vector<int>> e;
Graph(int n) : n(n), e(n) {}
void addEdge(int u, int v) {
e[u].push_back(v);
e[v].push_back(u);
}
std::vector<int> findMatching(int m, const auto &init) {
std::vector<int> match(n, -1), vis(n), link(n), f(n), dep(n);
for (auto [x, y] : init) {
match[x] = y;
match[y] = x;
}
// disjoint set union
auto find = [&](int u) {
while (f[u] != u)
u = f[u] = f[f[u]];
return u;
};
auto lca = [&](int u, int v) {
u = find(u);
v = find(v);
while (u != v) {
if (dep[u] < dep[v])
std::swap(u, v);
u = find(link[match[u]]);
}
return u;
};
std::queue<int> que;
auto blossom = [&](int u, int v, int p) {
while (find(u) != p) {
link[u] = v;
v = match[u];
if (vis[v] == 0) {
vis[v] = 1;
que.push(v);
}
f[u] = f[v] = p;
u = link[v];
}
};
// find an augmenting path starting from u and augment (if exist)
auto augment = [&](int u) {
while (!que.empty())
que.pop();
std::iota(f.begin(), f.end(), 0);
// vis = 0 corresponds to inner vertices, vis = 1 corresponds to outer vertices
std::fill(vis.begin(), vis.end(), -1);
que.push(u);
vis[u] = 1;
dep[u] = 0;
int y = -1;
while (!que.empty()){
int u = que.front();
que.pop();
if (u >= m) {
y = u;
}
for (auto v : e[u]) {
if (vis[v] == -1) {
vis[v] = 0;
link[v] = u;
dep[v] = dep[u] + 1;
// found an augmenting path
if (match[v] == -1) {
for (int x = v, y = u, temp; y != -1; x = temp, y = x == -1 ? -1 : link[x]) {
temp = match[y];
match[x] = y;
match[y] = x;
}
return;
}
vis[match[v]] = 1;
dep[match[v]] = dep[u] + 2;
que.push(match[v]);
} else if (vis[v] == 1 && find(v) != find(u)) {
// found a blossom
int p = lca(u, v);
blossom(u, v, p);
blossom(v, u, p);
}
}
}
if (y != -1) {
for (int x = -1, temp; y != -1; x = temp, y = x == -1 ? -1 : link[x]) {
temp = match[y];
if (x != -1) {
match[x] = y;
}
match[y] = x;
}
}
};
// find a maximal matching greedily (decrease constant)
// auto greedy = [&]() {
// for (int u = 0; u < n; ++u) {
// if (match[u] != -1)
// continue;
// for (auto v : e[u]) {
// if (match[v] == -1) {
// match[u] = v;
// match[v] = u;
// break;
// }
// }
// }
// };
// greedy();
for (int u = 0; u < m; ++u)
if (match[u] == -1)
augment(u);
return match;
}
};
/** 一般图最大匹配(Graph 带花树算法)【久远】
* 2021-12-24: https://codeforces.com/contest/1615/submission/140509278
* 2022-08-28: https://codeforces.com/gym/103260/submission/169975982
**/
struct Graph {
int n;
std::vector<std::vector<int>> e;
Graph(int n) : n(n), e(n) {}
void addEdge(int u, int v) {
e[u].push_back(v);
e[v].push_back(u);
}
std::vector<int> findMatching() {
std::vector<int> match(n, -1), vis(n), link(n), f(n), dep(n);
// disjoint set union
auto find = [&](int u) {
while (f[u] != u)
u = f[u] = f[f[u]];
return u;
};
auto lca = [&](int u, int v) {
u = find(u);
v = find(v);
while (u != v) {
if (dep[u] < dep[v])
std::swap(u, v);
u = find(link[match[u]]);
}
return u;
};
std::queue<int> que;
auto blossom = [&](int u, int v, int p) {
while (find(u) != p) {
link[u] = v;
v = match[u];
if (vis[v] == 0) {
vis[v] = 1;
que.push(v);
}
f[u] = f[v] = p;
u = link[v];
}
};
// find an augmenting path starting from u and augment (if exist)
auto augment = [&](int u) {
while (!que.empty())
que.pop();
std::iota(f.begin(), f.end(), 0);
// vis = 0 corresponds to inner vertices, vis = 1 corresponds to outer vertices
std::fill(vis.begin(), vis.end(), -1);
que.push(u);
vis[u] = 1;
dep[u] = 0;
while (!que.empty()){
int u = que.front();
que.pop();
for (auto v : e[u]) {
if (vis[v] == -1) {
vis[v] = 0;
link[v] = u;
dep[v] = dep[u] + 1;
// found an augmenting path
if (match[v] == -1) {
for (int x = v, y = u, temp; y != -1; x = temp, y = x == -1 ? -1 : link[x]) {
temp = match[y];
match[x] = y;
match[y] = x;
}
return;
}
vis[match[v]] = 1;
dep[match[v]] = dep[u] + 2;
que.push(match[v]);
} else if (vis[v] == 1 && find(v) != find(u)) {
// found a blossom
int p = lca(u, v);
blossom(u, v, p);
blossom(v, u, p);
}
}
}
};
// find a maximal matching greedily (decrease constant)
auto greedy = [&]() {
for (int u = 0; u < n; ++u) {
if (match[u] != -1)
continue;
for (auto v : e[u]) {
if (match[v] == -1) {
match[u] = v;
match[v] = u;
break;
}
}
}
};
greedy();
for (int u = 0; u < n; ++u)
if (match[u] == -1)
augment(u);
return match;
}
};
TwoSat(2-Sat)
/** TwoSat(2-Sat)
* 2023-09-29: https://atcoder.jp/contests/arc161/submissions/46031530
**/
struct TwoSat {
int n;
std::vector<std::vector<int>> e;
std::vector<bool> ans;
TwoSat(int n) : n(n), e(2 * n), ans(n) {}
void addClause(int u, bool f, int v, bool g) {
e[2 * u + !f].push_back(2 * v + g);
e[2 * v + !g].push_back(2 * u + f);
}
bool satisfiable() {
std::vector<int> id(2 * n, -1), dfn(2 * n, -1), low(2 * n, -1);
std::vector<int> stk;
int now = 0, cnt = 0;
std::function<void(int)> tarjan = [&](int u) {
stk.push_back(u);
dfn[u] = low[u] = now++;
for (auto v : e[u]) {
if (dfn[v] == -1) {
tarjan(v);
low[u] = std::min(low[u], low[v]);
} else if (id[v] == -1) {
low[u] = std::min(low[u], dfn[v]);
}
}
if (dfn[u] == low[u]) {
int v;
do {
v = stk.back();
stk.pop_back();
id[v] = cnt;
} while (v != u);
++cnt;
}
};
for (int i = 0; i < 2 * n; ++i) if (dfn[i] == -1) tarjan(i);
for (int i = 0; i < n; ++i) {
if (id[2 * i] == id[2 * i + 1]) return false;
ans[i] = id[2 * i] > id[2 * i + 1];
}
return true;
}
std::vector<bool> answer() { return ans; }
};
最大流
最大流(Flow 旧版其一,整数应用)
/** 最大流(Flow 旧版其一,整数应用)
* 2022-09-03: https://codeforces.com/contest/1717/submission/170688062
**/
template<class T>
struct Flow {
const int n;
struct Edge {
int to;
T cap;
Edge(int to, T cap) : to(to), cap(cap) {}
};
std::vector<Edge> e;
std::vector<std::vector<int>> g;
std::vector<int> cur, h;
Flow(int n) : n(n), g(n) {}
bool bfs(int s, int t) {
h.assign(n, -1);
std::queue<int> que;
h[s] = 0;
que.push(s);
while (!que.empty()) {
const int u = que.front();
que.pop();
for (int i : g[u]) {
auto [v, c] = e[i];
if (c > 0 && h[v] == -1) {
h[v] = h[u] + 1;
if (v == t) {
return true;
}
que.push(v);
}
}
}
return false;
}
T dfs(int u, int t, T f) {
if (u == t) {
return f;
}
auto r = f;
for (int &i = cur[u]; i < int(g[u].size()); ++i) {
const int j = g[u][i];
auto [v, c] = e[j];
if (c > 0 && h[v] == h[u] + 1) {
auto a = dfs(v, t, std::min(r, c));
e[j].cap -= a;
e[j ^ 1].cap += a;
r -= a;
if (r == 0) {
return f;
}
}
}
return f - r;
}
void addEdge(int u, int v, T c) {
g[u].push_back(e.size());
e.emplace_back(v, c);
g[v].push_back(e.size());
e.emplace_back(u, 0);
}
T maxFlow(int s, int t) {
T ans = 0;
while (bfs(s, t)) {
cur.assign(n, 0);
ans += dfs(s, t, std::numeric_limits<T>::max());
}
return ans;
}
};
最大流(Flow 旧版其二,浮点数应用)
/** 最大流(Flow 旧版其二,浮点数应用)
* 2022-04-09: https://cf.dianhsu.com/gym/104288/submission/201412765
**/
template<class T>
struct Flow {
const int n;
struct Edge {
int to;
T cap;
Edge(int to, T cap) : to(to), cap(cap) {}
};
std::vector<Edge> e;
std::vector<std::vector<int>> g;
std::vector<int> cur, h;
Flow(int n) : n(n), g(n) {}
bool bfs(int s, int t) {
h.assign(n, -1);
std::queue<int> que;
h[s] = 0;
que.push(s);
while (!que.empty()) {
const int u = que.front();
que.pop();
for (int i : g[u]) {
auto [v, c] = e[i];
if (c > 0 && h[v] == -1) {
h[v] = h[u] + 1;
if (v == t) {
return true;
}
que.push(v);
}
}
}
return false;
}
T dfs(int u, int t, T f) {
if (u == t) {
return f;
}
auto r = f;
double res = 0;
for (int &i = cur[u]; i < int(g[u].size()); ++i) {
const int j = g[u][i];
auto [v, c] = e[j];
if (c > 0 && h[v] == h[u] + 1) {
auto a = dfs(v, t, std::min(r, c));
res += a;
e[j].cap -= a;
e[j ^ 1].cap += a;
r -= a;
if (r == 0) {
return f;
}
}
}
return res;
}
void addEdge(int u, int v, T c) {
g[u].push_back(e.size());
e.emplace_back(v, c);
g[v].push_back(e.size());
e.emplace_back(u, 0);
}
T maxFlow(int s, int t) {
T ans = 0;
while (bfs(s, t)) {
cur.assign(n, 0);
ans += dfs(s, t, 1E100);
}
return ans;
}
};
最大流(MaxFlow 新版)
/** 最大流(MaxFlow 新版)
* 2023-07-21: https://ac.nowcoder.com/acm/contest/view-submission?submissionId=62915815
**/
constexpr int inf = 1E9;
template<class T>
struct MaxFlow {
struct _Edge {
int to;
T cap;
_Edge(int to, T cap) : to(to), cap(cap) {}
};
int n;
std::vector<_Edge> e;
std::vector<std::vector<int>> g;
std::vector<int> cur, h;
MaxFlow() {}
MaxFlow(int n) {
init(n);
}
void init(int n) {
this->n = n;
e.clear();
g.assign(n, {});
cur.resize(n);
h.resize(n);
}
bool bfs(int s, int t) {
h.assign(n, -1);
std::queue<int> que;
h[s] = 0;
que.push(s);
while (!que.empty()) {
const int u = que.front();
que.pop();
for (int i : g[u]) {
auto [v, c] = e[i];
if (c > 0 && h[v] == -1) {
h[v] = h[u] + 1;
if (v == t) {
return true;
}
que.push(v);
}
}
}
return false;
}
T dfs(int u, int t, T f) {
if (u == t) {
return f;
}
auto r = f;
for (int &i = cur[u]; i < int(g[u].size()); ++i) {
const int j = g[u][i];
auto [v, c] = e[j];
if (c > 0 && h[v] == h[u] + 1) {
auto a = dfs(v, t, std::min(r, c));
e[j].cap -= a;
e[j ^ 1].cap += a;
r -= a;
if (r == 0) {
return f;
}
}
}
return f - r;
}
void addEdge(int u, int v, T c) {
g[u].push_back(e.size());
e.emplace_back(v, c);
g[v].push_back(e.size());
e.emplace_back(u, 0);
}
T flow(int s, int t) {
T ans = 0;
while (bfs(s, t)) {
cur.assign(n, 0);
ans += dfs(s, t, std::numeric_limits<T>::max());
}
return ans;
}
std::vector<bool> minCut() {
std::vector<bool> c(n);
for (int i = 0; i < n; i++) {
c[i] = (h[i] != -1);
}
return c;
}
struct Edge {
int from;
int to;
T cap;
T flow;
};
std::vector<Edge> edges() {
std::vector<Edge> a;
for (int i = 0; i < e.size(); i += 2) {
Edge x;
x.from = e[i + 1].to;
x.to = e[i].to;
x.cap = e[i].cap + e[i + 1].cap;
x.flow = e[i + 1].cap;
a.push_back(x);
}
return a;
}
};
费用流
费用流(MCFGraph 旧版)
/** 费用流(MCFGraph 旧版)
* 2022-12-12: https://codeforces.com/contest/1766/submission/184974697
*
* 下方为最小费用**最大流**模板,如需求解最小费用**可行流**,需要去除建边限制
**/
struct MCFGraph {
struct Edge {
int v, c, f;
Edge(int v, int c, int f) : v(v), c(c), f(f) {}
};
const int n;
std::vector<Edge> e;
std::vector<std::vector<int>> g;
std::vector<i64> h, dis;
std::vector<int> pre;
bool dijkstra(int s, int t) {
dis.assign(n, std::numeric_limits<i64>::max());
pre.assign(n, -1);
std::priority_queue<std::pair<i64, int>, std::vector<std::pair<i64, int>>, std::greater<std::pair<i64, int>>> que;
dis[s] = 0;
que.emplace(0, s);
while (!que.empty()) {
i64 d = que.top().first;
int u = que.top().second;
que.pop();
if (dis[u] < d) continue;
for (int i : g[u]) {
int v = e[i].v;
int c = e[i].c;
int f = e[i].f;
if (c > 0 && dis[v] > d + h[u] - h[v] + f) {
dis[v] = d + h[u] - h[v] + f;
pre[v] = i;
que.emplace(dis[v], v);
}
}
}
return dis[t] != std::numeric_limits<i64>::max();
}
MCFGraph(int n) : n(n), g(n) {}
void addEdge(int u, int v, int c, int f) {
// if (f < 0) {
g[u].push_back(e.size());
e.emplace_back(v, 0, f);
g[v].push_back(e.size());
e.emplace_back(u, c, -f);
// } else {
// g[u].push_back(e.size());
// e.emplace_back(v, c, f);
// g[v].push_back(e.size());
// e.emplace_back(u, 0, -f);
// }
}
std::pair<int, i64> flow(int s, int t) {
int flow = 0;
i64 cost = 0;
h.assign(n, 0);
while (dijkstra(s, t)) {
for (int i = 0; i < n; ++i) h[i] += dis[i];
int aug = std::numeric_limits<int>::max();
for (int i = t; i != s; i = e[pre[i] ^ 1].v) aug = std::min(aug, e[pre[i]].c);
for (int i = t; i != s; i = e[pre[i] ^ 1].v) {
e[pre[i]].c -= aug;
e[pre[i] ^ 1].c += aug;
}
flow += aug;
cost += i64(aug) * h[t];
}
return std::make_pair(flow, cost);
}
};
费用流(MinCostFlow 新版)
/** 费用流(MinCostFlow 新版)
* 2023-11-09: https://qoj.ac/submission/244680
**/
template<class T>
struct MinCostFlow {
struct _Edge {
int to;
T cap;
T cost;
_Edge(int to_, T cap_, T cost_) : to(to_), cap(cap_), cost(cost_) {}
};
int n;
std::vector<_Edge> e;
std::vector<std::vector<int>> g;
std::vector<T> h, dis;
std::vector<int> pre;
bool dijkstra(int s, int t) {
dis.assign(n, std::numeric_limits<T>::max());
pre.assign(n, -1);
std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>, std::greater<std::pair<T, int>>> que;
dis[s] = 0;
que.emplace(0, s);
while (!que.empty()) {
T d = que.top().first;
int u = que.top().second;
que.pop();
if (dis[u] != d) {
continue;
}
for (int i : g[u]) {
int v = e[i].to;
T cap = e[i].cap;
T cost = e[i].cost;
if (cap > 0 && dis[v] > d + h[u] - h[v] + cost) {
dis[v] = d + h[u] - h[v] + cost;
pre[v] = i;
que.emplace(dis[v], v);
}
}
}
return dis[t] != std::numeric_limits<T>::max();
}
MinCostFlow() {}
MinCostFlow(int n_) {
init(n_);
}
void init(int n_) {
n = n_;
e.clear();
g.assign(n, {});
}
void addEdge(int u, int v, T cap, T cost) {
g[u].push_back(e.size());
e.emplace_back(v, cap, cost);
g[v].push_back(e.size());
e.emplace_back(u, 0, -cost);
}
std::pair<T, T> flow(int s, int t) {
T flow = 0;
T cost = 0;
h.assign(n, 0);
while (dijkstra(s, t)) {
for (int i = 0; i < n; ++i) {
h[i] += dis[i];
}
T aug = std::numeric_limits<int>::max();
for (int i = t; i != s; i = e[pre[i] ^ 1].to) {
aug = std::min(aug, e[pre[i]].cap);
}
for (int i = t; i != s; i = e[pre[i] ^ 1].to) {
e[pre[i]].cap -= aug;
e[pre[i] ^ 1].cap += aug;
}
flow += aug;
cost += aug * h[t];
}
return std::make_pair(flow, cost);
}
struct Edge {
int from;
int to;
T cap;
T cost;
T flow;
};
std::vector<Edge> edges() {
std::vector<Edge> a;
for (int i = 0; i < e.size(); i += 2) {
Edge x;
x.from = e[i + 1].to;
x.to = e[i].to;
x.cap = e[i].cap + e[i + 1].cap;
x.cost = e[i].cost;
x.flow = e[i + 1].cap;
a.push_back(x);
}
return a;
}
};
树链剖分(HLD)
/** 树链剖分(HLD)
* 2023-08-31: https://codeforces.com/contest/1863/submission/221214363
**/
struct HLD {
int n;
std::vector<int> siz, top, dep, parent, in, out, seq;
std::vector<std::vector<int>> adj;
int cur;
HLD() {}
HLD(int n) {
init(n);
}
void init(int n) {
this->n = n;
siz.resize(n);
top.resize(n);
dep.resize(n);
parent.resize(n);
in.resize(n);
out.resize(n);
seq.resize(n);
cur = 0;
adj.assign(n, {});
}
void addEdge(int u, int v) {
adj[u].push_back(v);
adj[v].push_back(u);
}
void work(int root = 0) {
top[root] = root;
dep[root] = 0;
parent[root] = -1;
dfs1(root);
dfs2(root);
}
void dfs1(int u) {
if (parent[u] != -1) {
adj[u].erase(std::find(adj[u].begin(), adj[u].end(), parent[u]));
}
siz[u] = 1;
for (auto &v : adj[u]) {
parent[v] = u;
dep[v] = dep[u] + 1;
dfs1(v);
siz[u] += siz[v];
if (siz[v] > siz[adj[u][0]]) {
std::swap(v, adj[u][0]);
}
}
}
void dfs2(int u) {
in[u] = cur++;
seq[in[u]] = u;
for (auto v : adj[u]) {
top[v] = v == adj[u][0] ? top[u] : v;
dfs2(v);
}
out[u] = cur;
}
int lca(int u, int v) {
while (top[u] != top[v]) {
if (dep[top[u]] > dep[top[v]]) {
u = parent[top[u]];
} else {
v = parent[top[v]];
}
}
return dep[u] < dep[v] ? u : v;
}
int dist(int u, int v) {
return dep[u] + dep[v] - 2 * dep[lca(u, v)];
}
int jump(int u, int k) {
if (dep[u] < k) {
return -1;
}
int d = dep[u] - k;
while (dep[top[u]] > d) {
u = parent[top[u]];
}
return seq[in[u] - dep[u] + d];
}
bool isAncester(int u, int v) {
return in[u] <= in[v] && in[v] < out[u];
}
int rootedParent(int u, int v) {
std::swap(u, v);
if (u == v) {
return u;
}
if (!isAncester(u, v)) {
return parent[u];
}
auto it = std::upper_bound(adj[u].begin(), adj[u].end(), v, [&](int x, int y) {
return in[x] < in[y];
}) - 1;
return *it;
}
int rootedSize(int u, int v) {
if (u == v) {
return n;
}
if (!isAncester(v, u)) {
return siz[v];
}
return n - siz[rootedParent(u, v)];
}
int rootedLca(int a, int b, int c) {
return lca(a, b) ^ lca(b, c) ^ lca(c, a);
}
};
三、数论、几何、多项式
点击查看代码
快速幂
/** 快速幂 - 普通版
* 2023-10-09: https://atcoder.jp/contests/tenka1-2017/submissions/46411797
**/
int power(int a, i64 b, int p) {
int res = 1;
for (; b; b /= 2, a = 1LL * a * a % p) {
if (b % 2) {
res = 1LL * res * a % p;
}
}
return res;
}
/** 快速幂 - 手写乘法
* 2023-09-27: https://qoj.ac/submission/189343
**/
using i64 = long long;
i64 mul(i64 a, i64 b, i64 p) {
i64 c = a * b - i64(1.0L * a * b / p) * p;
c %= p;
if (c < 0) {
c += p;
}
return c;
}
i64 power(i64 a, i64 b, i64 p) {
i64 res = 1;
for (; b; b /= 2, a = mul(a, a, p)) {
if (b % 2) {
res = mul(res, a, p);
}
}
return res;
}
基姆拉尔森公式
/** 基姆拉尔森公式
* 2023-09-05: https://qoj.ac/submission/164735
**/
const int d[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
bool isLeap(int y) {
return y % 400 == 0 || (y % 4 == 0 && y % 100 != 0);
}
int daysInMonth(int y, int m) {
return d[m - 1] + (isLeap(y) && m == 2);
}
int getDay(int y, int m, int d) {
int ans = 0;
for (int i = 1970; i < y; i++) {
ans += 365 + isLeap(i);
}
for (int i = 1; i < m; i++) {
ans += daysInMonth(y, i);
}
ans += d;
return (ans + 2) % 7 + 1;
}
欧拉筛
/** 欧拉筛
* 2023-11-14: https://qoj.ac/submission/251234
**/
std::vector<int> minp, primes;
void sieve(int n) {
minp.assign(n + 1, 0);
primes.clear();
for (int i = 2; i <= n; i++) {
if (minp[i] == 0) {
minp[i] = i;
primes.push_back(i);
}
for (auto p : primes) {
if (i * p > n) {
break;
}
minp[i * p] = p;
if (p == minp[i]) {
break;
}
}
}
}
bool isprime(int n) {
return minp[n] == n;
}
/** 欧拉筛
* 2023-03-22: https://yukicoder.me/submissions/851524
**/
void sieve(int n) {
minp.assign(n + 1, 0);
phi.assign(n + 1, 0);
primes.clear();
for (int i = 2; i <= n; i++) {
if (minp[i] == 0) {
minp[i] = i;
phi[i] = i - 1;
primes.push_back(i);
}
for (auto p : primes) {
if (i * p > n) {
break;
}
minp[i * p] = p;
if (p == minp[i]) {
phi[i * p] = phi[i] * p;
break;
}
phi[i * p] = phi[i] * (p - 1);
}
}
for (int i = 2; i <= n; i++) {
phi[i] += phi[i - 1];
}
}
莫比乌斯函数筛(莫比乌斯反演)
/** 莫比乌斯函数筛(莫比乌斯反演)
* 2023-03-04: https://atcoder.jp/contests/tupc2022/submissions/39391116
* 2023-04-07: https://yukicoder.me/submissions/857472
**/
std::unordered_map<int, Z> fMu;
std::vector<int> minp, primes, phi, mu;
std::vector<i64> sphi;
void sieve(int n) {
minp.assign(n + 1, 0);
phi.assign(n + 1, 0);
sphi.assign(n + 1, 0);
mu.assign(n + 1, 0);
primes.clear();
phi[1] = 1;
mu[1] = 1;
for (int i = 2; i <= n; i++) {
if (minp[i] == 0) {
minp[i] = i;
phi[i] = i - 1;
mu[i] = -1;
primes.push_back(i);
}
for (auto p : primes) {
if (i * p > n) {
break;
}
minp[i * p] = p;
if (p == minp[i]) {
phi[i * p] = phi[i] * p;
break;
}
phi[i * p] = phi[i] * (p - 1);
mu[i * p] = -mu[i];
}
}
for (int i = 1; i <= n; i++) {
sphi[i] = sphi[i - 1] + phi[i];
mu[i] += mu[i - 1];
}
}
Z sumMu(int n) {
if (n <= N) {
return mu[n];
}
if (fMu.count(n)) {
return fMu[n];
}
if (n == 0) {
return 0;
}
Z ans = 1;
for (int l = 2, r; l <= n; l = r + 1) {
r = n / (n / l);
ans -= (r - l + 1) * sumMu(n / l);
}
return ans;
}
扩展欧几里得(exgcd)
/** 扩展欧几里得(exgcd)
* 2024-08-07: https://codeforces.com/contest/1993/submission/275110715
**/
i64 exgcd(i64 a, i64 b, i64 &x, i64 &y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
i64 g = exgcd(b, a % b, y, x);
y -= a / b * x;
return g;
}
// ax + b = 0 (mod m)
std::pair<i64, i64> sol(i64 a, i64 b, i64 m) {
assert(m > 0);
b *= -1;
i64 x, y;
i64 g = exgcd(a, m, x, y);
if (g < 0) {
g *= -1;
x *= -1;
y *= -1;
}
if (b % g != 0) {
return {-1, -1};
}
x = x * (b / g) % (m / g);
if (x < 0) {
x += m / g;
}
return {x, m / g};
}
/** 扩展欧几里得(exgcd)
* 2023-09-05: https://qoj.ac/submission/165983
**/
std::array<i64, 3> exgcd(i64 a, i64 b) {
if (!b) {
return {a, 1, 0};
}
auto [g, x, y] = exgcd(b, a % b);
return {g, y, x - a / b * y};
}
欧拉函数
/** 欧拉函数(求解单个数的欧拉函数)
* 2023-10-09: https://atcoder.jp/contests/tenka1-2017/submissions/46411797
**/
int phi(int n) {
int res = n;
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) {
while (n % i == 0) {
n /= i;
}
res = res / i * (i - 1);
}
}
if (n > 1) {
res = res / n * (n - 1);
}
return res;
}
/** 欧拉函数(求解全部数的欧拉函数)
* 2023-09-24: https://qoj.ac/submission/187055
**/
constexpr int N = 1E7;
constexpr int P = 1000003;
bool isprime[N + 1];
int phi[N + 1];
std::vector<int> primes;
std::fill(isprime + 2, isprime + N + 1, true);
phi[1] = 1;
for (int i = 2; i <= N; i++) {
if (isprime[i]) {
primes.push_back(i);
phi[i] = i - 1;
}
for (auto p : primes) {
if (i * p > N) {
break;
}
isprime[i * p] = false;
if (i % p == 0) {
phi[i * p] = phi[i] * p;
break;
}
phi[i * p] = phi[i] * (p - 1);
}
}
组合数
组合数(小范围预处理,逆元+杨辉三角)
/** 组合数(小范围预处理,逆元+杨辉三角)
* 2024-03-14: https://qoj.ac/submission/353877
* 2023-10-06: https://qoj.ac/submission/203196
**/
constexpr int P = 1000000007;
constexpr int L = 10000;
int fac[L + 1], invfac[L + 1];
int sumbinom[L + 1][7];
int binom(int n, int m) {
if (n < m || m < 0) {
return 0;
}
return 1LL * fac[n] * invfac[m] % P * invfac[n - m] % P;
}
int power(int a, int b) {
int res = 1;
for (; b; b /= 2, a = 1LL * a * a % P) {
if (b % 2) {
res = 1LL * res * a % P;
}
}
return res;
}
int main() {
fac[0] = 1;
for (int i = 1; i <= L; i++) {
fac[i] = 1LL * fac[i - 1] * i % P;
}
invfac[L] = power(fac[L], P - 2);
for (int i = L; i; i--) {
invfac[i - 1] = 1LL * invfac[i] * i % P;
}
sumbinom[0][0] = 1;
for (int i = 1; i <= L; i++) {
for (int j = 0; j < 7; j++) {
sumbinom[i][j] = (sumbinom[i - 1][j] + sumbinom[i - 1][(j + 6) % 7]) % P;
}
}
}
组合数(Comb, with. ModIntBase)
/** 组合数(Comb, with. ModIntBase)
* 2024-08-06: https://codeforces.com/contest/1999/submission/274744751
**/
struct Comb {
int n;
std::vector<Z> _fac;
std::vector<Z> _invfac;
std::vector<Z> _inv;
Comb() : n{0}, _fac{1}, _invfac{1}, _inv{0} {}
Comb(int n) : Comb() {
init(n);
}
void init(int m) {
if (m <= n) return;
_fac.resize(m + 1);
_invfac.resize(m + 1);
_inv.resize(m + 1);
for (int i = n + 1; i <= m; i++) {
_fac[i] = _fac[i - 1] * i;
}
_invfac[m] = _fac[m].inv();
for (int i = m; i > n; i--) {
_invfac[i - 1] = _invfac[i] * i;
_inv[i] = _invfac[i] * _fac[i - 1];
}
n = m;
}
Z fac(int m) {
if (m > n) init(2 * m);
return _fac[m];
}
Z invfac(int m) {
if (m > n) init(2 * m);
return _invfac[m];
}
Z inv(int m) {
if (m > n) init(2 * m);
return _inv[m];
}
Z binom(int n, int m) {
if (n < m || m < 0) return 0;
return fac(n) * invfac(m) * invfac(n - m);
}
} comb;
素数测试与因式分解(Miller-Rabin & Pollard-Rho)
/** 素数测试与因式分解(Miller-Rabin & Pollard-Rho)
* 2023-05-16: https://cf.dianhsu.com/gym/104354/submission/206130894
**/
i64 mul(i64 a, i64 b, i64 m) {
return static_cast<__int128>(a) * b % m;
}
i64 power(i64 a, i64 b, i64 m) {
i64 res = 1 % m;
for (; b; b >>= 1, a = mul(a, a, m))
if (b & 1)
res = mul(res, a, m);
return res;
}
bool isprime(i64 n) {
if (n < 2)
return false;
static constexpr int A[] = {2, 3, 5, 7, 11, 13, 17, 19, 23};
int s = __builtin_ctzll(n - 1);
i64 d = (n - 1) >> s;
for (auto a : A) {
if (a == n)
return true;
i64 x = power(a, d, n);
if (x == 1 || x == n - 1)
continue;
bool ok = false;
for (int i = 0; i < s - 1; ++i) {
x = mul(x, x, n);
if (x == n - 1) {
ok = true;
break;
}
}
if (!ok)
return false;
}
return true;
}
std::vector<i64> factorize(i64 n) {
std::vector<i64> p;
std::function<void(i64)> f = [&](i64 n) {
if (n <= 10000) {
for (int i = 2; i * i <= n; ++i)
for (; n % i == 0; n /= i)
p.push_back(i);
if (n > 1)
p.push_back(n);
return;
}
if (isprime(n)) {
p.push_back(n);
return;
}
auto g = [&](i64 x) {
return (mul(x, x, n) + 1) % n;
};
i64 x0 = 2;
while (true) {
i64 x = x0;
i64 y = x0;
i64 d = 1;
i64 power = 1, lam = 0;
i64 v = 1;
while (d == 1) {
y = g(y);
++lam;
v = mul(v, std::abs(x - y), n);
if (lam % 127 == 0) {
d = std::gcd(v, n);
v = 1;
}
if (power == lam) {
x = y;
power *= 2;
lam = 0;
d = std::gcd(v, n);
v = 1;
}
}
if (d != n) {
f(d);
f(n / d);
return;
}
++x0;
}
};
f(n);
std::sort(p.begin(), p.end());
return p;
}
平面几何
立体几何
静态凸包
多项式
生成函数
自适应辛普森法(Simpson)
矩阵(Matrix)
高斯消元法(gaussian elimination)【久远】
/** 高斯消元法(gaussian elimination)【久远】
* 2020-08-30: https://codeforces.com/gym/102129/submission/91334513
**/
std::vector<int> operator*(const std::vector<int> &lhs, const std::vector<int> &rhs) {
std::vector<int> res(lhs.size() + rhs.size() - 1);
for (int i = 0; i < int(lhs.size()); ++i)
for (int j = 0; j < int(rhs.size()); ++j)
res[i + j] = (res[i + j] + 1ll * lhs[i] * rhs[j]) % P;
return res;
}
std::vector<int> operator%(const std::vector<int> &lhs, const std::vector<int> &rhs) {
auto res = lhs;
int m = rhs.size() - 1;
int inv = power(rhs.back(), P - 2);
for (int i = res.size() - 1; i >= m; --i) {
int x = 1ll * inv * res[i] % P;
for (int j = 0; j < m; ++j)
res[i - m + j] = (res[i - m + j] + 1ll * (P - x) * rhs[j]) % P;
}
if (int(res.size()) > m)
res.resize(m);
return res;
}
std::vector<int> gauss(std::vector<std::vector<int>> a, std::vector<int> b) {
int n = a.size();
for (int i = 0; i < n; ++i) {
int r = i;
while (a[r][i] == 0)
++r;
std::swap(a[i], a[r]);
std::swap(b[i], b[r]);
int inv = power(a[i][i], P - 2);
for (int j = i; j < n; ++j)
a[i][j] = 1ll * a[i][j] * inv % P;
b[i] = 1ll * b[i] * inv % P;
for (int j = 0; j < n; ++j) {
if (i == j)
continue;
int x = a[j][i];
for (int k = i; k < n; ++k)
a[j][k] = (a[j][k] + 1ll * (P - x) * a[i][k]) % P;
b[j] = (b[j] + 1ll * (P - x) * b[i]) % P;
}
}
return b;
}
/** 高斯消元法(gaussian elimination)【久远】
* 2020-12-02: https://www.codechef.com/viewsolution/39942900
**/
std::vector<double> gauss(std::vector<std::vector<double>> a, std::vector<double> b) {
int n = a.size();
for (int i = 0; i < n; ++i) {
double x = a[i][i];
for (int j = i; j < n; ++j) a[i][j] /= x;
b[i] /= x;
for (int j = 0; j < n; ++j) {
if (i == j) continue;
x = a[j][i];
for (int k = i; k < n; ++k) a[j][k] -= a[i][k] * x;
b[j] -= b[i] * x;
}
}
return b;
}
四、数据结构
点击查看本章节
树状数组
树状数组(Fenwick 新版)
/** 树状数组(Fenwick 新版)
* 2023-12-28: https://codeforces.com/contest/1915/submission/239262801
**/
template <typename T>
struct Fenwick {
int n;
std::vector<T> a;
Fenwick(int n_ = 0) {
init(n_);
}
void init(int n_) {
n = n_;
a.assign(n, T{});
}
void add(int x, const T &v) {
for (int i = x + 1; i <= n; i += i & -i) {
a[i - 1] = a[i - 1] + v;
}
}
T sum(int x) {
T ans{};
for (int i = x; i > 0; i -= i & -i) {
ans = ans + a[i - 1];
}
return ans;
}
T rangeSum(int l, int r) {
return sum(r) - sum(l);
}
int select(const T &k) {
int x = 0;
T cur{};
for (int i = 1 << std::__lg(n); i; i /= 2) {
if (x + i <= n && cur + a[x + i - 1] <= k) {
x += i;
cur = cur + a[x - 1];
}
}
return x;
}
};
并查集
并查集(DSU)
/** 并查集(DSU)
* 2023-08-04: https://ac.nowcoder.com/acm/contest/view-submission?submissionId=63239142
**/
struct DSU {
std::vector<int> f, siz;
DSU() {}
DSU(int n) {
init(n);
}
void init(int n) {
f.resize(n);
std::iota(f.begin(), f.end(), 0);
siz.assign(n, 1);
}
int find(int x) {
while (x != f[x]) {
x = f[x] = f[f[x]];
}
return x;
}
bool same(int x, int y) {
return find(x) == find(y);
}
bool merge(int x, int y) {
x = find(x);
y = find(y);
if (x == y) {
return false;
}
siz[x] += siz[y];
f[y] = x;
return true;
}
int size(int x) {
return siz[find(x)];
}
};
可撤销并查集(DSU With Rollback)
/** 可撤销并查集(DSU With Rollback)
* 2024-09-17: https://qoj.ac/submission/569639
**/
struct DSU {
std::vector<int> siz;
std::vector<int> f;
std::vector<std::array<int, 2>> his;
DSU(int n) : siz(n + 1, 1), f(n + 1) {
std::iota(f.begin(), f.end(), 0);
}
int find(int x) {
while (f[x] != x) {
x = f[x];
}
return x;
}
bool merge(int x, int y) {
x = find(x);
y = find(y);
if (x == y) {
return false;
}
if (siz[x] < siz[y]) {
std::swap(x, y);
}
his.push_back({x, y});
siz[x] += siz[y];
f[y] = x;
return true;
}
int time() {
return his.size();
}
void revert(int tm) {
while (his.size() > tm) {
auto [x, y] = his.back();
his.pop_back();
f[y] = y;
siz[x] -= siz[y];
}
}
};
线段树
线段树(SegmentTree+Info 区间加+单点修改)
/** 线段树(SegmentTree+Info 初始赋值+单点修改+查找前驱后继)
* 2023-07-17: https://ac.nowcoder.com/acm/contest/view-submission?submissionId=62804432
* 2024-06-25: https://codeforces.com/contest/1982/submission/267353839
**/
template<class Info>
struct SegmentTree {
int n;
std::vector<Info> info;
SegmentTree() : n(0) {}
SegmentTree(int n_, Info v_ = Info()) {
init(n_, v_);
}
template<class T>
SegmentTree(std::vector<T> init_) {
init(init_);
}
void init(int n_, Info v_ = Info()) {
init(std::vector(n_, v_));
}
template<class T>
void init(std::vector<T> init_) {
n = init_.size();
info.assign(4 << std::__lg(n), Info());
std::function<void(int, int, int)> build = [&](int p, int l, int r) {
if (r - l == 1) {
info[p] = init_[l];
return;
}
int m = (l + r) / 2;
build(2 * p, l, m);
build(2 * p + 1, m, r);
pull(p);
};
build(1, 0, n);
}
void pull(int p) {
info[p] = info[2 * p] + info[2 * p + 1];
}
void modify(int p, int l, int r, int x, const Info &v) {
if (r - l == 1) {
info[p] = v;
return;
}
int m = (l + r) / 2;
if (x < m) {
modify(2 * p, l, m, x, v);
} else {
modify(2 * p + 1, m, r, x, v);
}
pull(p);
}
void modify(int p, const Info &v) {
modify(1, 0, n, p, v);
}
Info rangeQuery(int p, int l, int r, int x, int y) {
if (l >= y || r <= x) {
return Info();
}
if (l >= x && r <= y) {
return info[p];
}
int m = (l + r) / 2;
return rangeQuery(2 * p, l, m, x, y) + rangeQuery(2 * p + 1, m, r, x, y);
}
Info rangeQuery(int l, int r) {
return rangeQuery(1, 0, n, l, r);
}
template<class F>
int findFirst(int p, int l, int r, int x, int y, F &&pred) {
if (l >= y || r <= x) {
return -1;
}
if (l >= x && r <= y && !pred(info[p])) {
return -1;
}
if (r - l == 1) {
return l;
}
int m = (l + r) / 2;
int res = findFirst(2 * p, l, m, x, y, pred);
if (res == -1) {
res = findFirst(2 * p + 1, m, r, x, y, pred);
}
return res;
}
template<class F>
int findFirst(int l, int r, F &&pred) {
return findFirst(1, 0, n, l, r, pred);
}
template<class F>
int findLast(int p, int l, int r, int x, int y, F &&pred) {
if (l >= y || r <= x) {
return -1;
}
if (l >= x && r <= y && !pred(info[p])) {
return -1;
}
if (r - l == 1) {
return l;
}
int m = (l + r) / 2;
int res = findLast(2 * p + 1, m, r, x, y, pred);
if (res == -1) {
res = findLast(2 * p, l, m, x, y, pred);
}
return res;
}
template<class F>
int findLast(int l, int r, F &&pred) {
return findLast(1, 0, n, l, r, pred);
}
};
懒标记线段树(LazySegmentTree)
/** 懒标记线段树(LazySegmentTree)
* 2023-03-03: https://atcoder.jp/contests/joi2023yo2/submissions/39363123
* 2023-03-12: https://codeforces.com/contest/1804/submission/197106837
* 2023-07-17: https://ac.nowcoder.com/acm/contest/view-submission?submissionId=62804432
* 2023-11-12: https://qoj.ac/submission/249505
* 2024-08-14: https://ac.nowcoder.com/acm/contest/view-submission?submissionId=70980889&returnHomeType=1&uid=329687984
**/
template<class Info, class Tag>
struct LazySegmentTree {
int n;
std::vector<Info> info;
std::vector<Tag> tag;
LazySegmentTree() : n(0) {}
LazySegmentTree(int n_, Info v_ = Info()) {
init(n_, v_);
}
template<class T>
LazySegmentTree(std::vector<T> init_) {
init(init_);
}
void init(int n_, Info v_ = Info()) {
init(std::vector(n_, v_));
}
template<class T>
void init(std::vector<T> init_) {
n = init_.size();
info.assign(4 << std::__lg(n), Info());
tag.assign(4 << std::__lg(n), Tag());
std::function<void(int, int, int)> build = [&](int p, int l, int r) {
if (r - l == 1) {
info[p] = init_[l];
return;
}
int m = (l + r) / 2;
build(2 * p, l, m);
build(2 * p + 1, m, r);
pull(p);
};
build(1, 0, n);
}
void pull(int p) {
info[p] = info[2 * p] + info[2 * p + 1];
}
void apply(int p, const Tag &v) {
info[p].apply(v);
tag[p].apply(v);
}
void push(int p) {
apply(2 * p, tag[p]);
apply(2 * p + 1, tag[p]);
tag[p] = Tag();
}
void modify(int p, int l, int r, int x, const Info &v) {
if (r - l == 1) {
info[p] = v;
return;
}
int m = (l + r) / 2;
push(p);
if (x < m) {
modify(2 * p, l, m, x, v);
} else {
modify(2 * p + 1, m, r, x, v);
}
pull(p);
}
void modify(int p, const Info &v) {
modify(1, 0, n, p, v);
}
Info rangeQuery(int p, int l, int r, int x, int y) {
if (l >= y || r <= x) {
return Info();
}
if (l >= x && r <= y) {
return info[p];
}
int m = (l + r) / 2;
push(p);
return rangeQuery(2 * p, l, m, x, y) + rangeQuery(2 * p + 1, m, r, x, y);
}
Info rangeQuery(int l, int r) {
return rangeQuery(1, 0, n, l, r);
}
void rangeApply(int p, int l, int r, int x, int y, const Tag &v) {
if (l >= y || r <= x) {
return;
}
if (l >= x && r <= y) {
apply(p, v);
return;
}
int m = (l + r) / 2;
push(p);
rangeApply(2 * p, l, m, x, y, v);
rangeApply(2 * p + 1, m, r, x, y, v);
pull(p);
}
void rangeApply(int l, int r, const Tag &v) {
return rangeApply(1, 0, n, l, r, v);
}
void half(int p, int l, int r) {
if (info[p].act == 0) {
return;
}
if ((info[p].min + 1) / 2 == (info[p].max + 1) / 2) {
apply(p, {-(info[p].min + 1) / 2});
return;
}
int m = (l + r) / 2;
push(p);
half(2 * p, l, m);
half(2 * p + 1, m, r);
pull(p);
}
void half() {
half(1, 0, n);
}
template<class F>
int findFirst(int p, int l, int r, int x, int y, F &&pred) {
if (l >= y || r <= x) {
return -1;
}
if (l >= x && r <= y && !pred(info[p])) {
return -1;
}
if (r - l == 1) {
return l;
}
int m = (l + r) / 2;
push(p);
int res = findFirst(2 * p, l, m, x, y, pred);
if (res == -1) {
res = findFirst(2 * p + 1, m, r, x, y, pred);
}
return res;
}
template<class F>
int findFirst(int l, int r, F &&pred) {
return findFirst(1, 0, n, l, r, pred);
}
template<class F>
int findLast(int p, int l, int r, int x, int y, F &&pred) {
if (l >= y || r <= x) {
return -1;
}
if (l >= x && r <= y && !pred(info[p])) {
return -1;
}
if (r - l == 1) {
return l;
}
int m = (l + r) / 2;
push(p);
int res = findLast(2 * p + 1, m, r, x, y, pred);
if (res == -1) {
res = findLast(2 * p, l, m, x, y, pred);
}
return res;
}
template<class F>
int findLast(int l, int r, F &&pred) {
return findLast(1, 0, n, l, r, pred);
}
void maintainL(int p, int l, int r, int pre) {
if (info[p].difl > 0 && info[p].maxlowl < pre) {
return;
}
if (r - l == 1) {
info[p].max = info[p].maxlowl;
info[p].maxl = info[p].maxr = l;
info[p].maxlowl = info[p].maxlowr = -inf;
return;
}
int m = (l + r) / 2;
push(p);
maintainL(2 * p, l, m, pre);
pre = std::max(pre, info[2 * p].max);
maintainL(2 * p + 1, m, r, pre);
pull(p);
}
void maintainL() {
maintainL(1, 0, n, -1);
}
void maintainR(int p, int l, int r, int suf) {
if (info[p].difr > 0 && info[p].maxlowr < suf) {
return;
}
if (r - l == 1) {
info[p].max = info[p].maxlowl;
info[p].maxl = info[p].maxr = l;
info[p].maxlowl = info[p].maxlowr = -inf;
return;
}
int m = (l + r) / 2;
push(p);
maintainR(2 * p + 1, m, r, suf);
suf = std::max(suf, info[2 * p + 1].max);
maintainR(2 * p, l, m, suf);
pull(p);
}
void maintainR() {
maintainR(1, 0, n, -1);
}
};
struct Tag {
int x = 0;
void apply(const Tag &t) & {
x = std::max(x, t.x);
}
};
struct Info {
int x = 0;
void apply(const Tag &t) & {
x = std::max(x, t.x);
}
};
Info operator+(const Info &a, const Info &b) {
return {std::max(a.x, b.x)};
}
动态取模类(ModIntBase)
template<class T>
constexpr T power(T a, u64 b, T res = 1) {
for (; b != 0; b /= 2, a *= a) {
if (b & 1) {
res *= a;
}
}
return res;
}
template<u32 P>
constexpr u32 mulMod(u32 a, u32 b) {
return u64(a) * b % P;
}
template<u64 P>
constexpr u64 mulMod(u64 a, u64 b) {
u64 res = a * b - u64(1.L * a * b / P - 0.5L) * P;
res %= P;
return res;
}
constexpr i64 safeMod(i64 x, i64 m) {
x %= m;
if (x < 0) {
x += m;
}
return x;
}
constexpr std::pair<i64, i64> invGcd(i64 a, i64 b) {
a = safeMod(a, b);
if (a == 0) {
return {b, 0};
}
i64 s = b, t = a;
i64 m0 = 0, m1 = 1;
while (t) {
i64 u = s / t;
s -= t * u;
m0 -= m1 * u;
std::swap(s, t);
std::swap(m0, m1);
}
if (m0 < 0) {
m0 += b / s;
}
return {s, m0};
}
template<std::unsigned_integral U, U P>
struct ModIntBase {
public:
constexpr ModIntBase() : x(0) {}
template<std::unsigned_integral T>
constexpr ModIntBase(T x_) : x(x_ % mod()) {}
template<std::signed_integral T>
constexpr ModIntBase(T x_) {
using S = std::make_signed_t<U>;
S v = x_ % S(mod());
if (v < 0) {
v += mod();
}
x = v;
}
constexpr static U mod() {
return P;
}
constexpr U val() const {
return x;
}
constexpr ModIntBase operator-() const {
ModIntBase res;
res.x = (x == 0 ? 0 : mod() - x);
return res;
}
constexpr ModIntBase inv() const {
return power(*this, mod() - 2);
}
constexpr ModIntBase &operator*=(const ModIntBase &rhs) & {
x = mulMod<mod()>(x, rhs.val());
return *this;
}
constexpr ModIntBase &operator+=(const ModIntBase &rhs) & {
x += rhs.val();
if (x >= mod()) {
x -= mod();
}
return *this;
}
constexpr ModIntBase &operator-=(const ModIntBase &rhs) & {
x -= rhs.val();
if (x >= mod()) {
x += mod();
}
return *this;
}
constexpr ModIntBase &operator/=(const ModIntBase &rhs) & {
return *this *= rhs.inv();
}
friend constexpr ModIntBase operator*(ModIntBase lhs, const ModIntBase &rhs) {
lhs *= rhs;
return lhs;
}
friend constexpr ModIntBase operator+(ModIntBase lhs, const ModIntBase &rhs) {
lhs += rhs;
return lhs;
}
friend constexpr ModIntBase operator-(ModIntBase lhs, const ModIntBase &rhs) {
lhs -= rhs;
return lhs;
}
friend constexpr ModIntBase operator/(ModIntBase lhs, const ModIntBase &rhs) {
lhs /= rhs;
return lhs;
}
friend constexpr std::istream &operator>>(std::istream &is, ModIntBase &a) {
i64 i;
is >> i;
a = i;
return is;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const ModIntBase &a) {
return os << a.val();
}
friend constexpr bool operator==(const ModIntBase &lhs, const ModIntBase &rhs) {
return lhs.val() == rhs.val();
}
friend constexpr std::strong_ordering operator<=>(const ModIntBase &lhs, const ModIntBase &rhs) {
return lhs.val() <=> rhs.val();
}
private:
U x;
};
template<u32 P>
using ModInt = ModIntBase<u32, P>;
template<u64 P>
using ModInt64 = ModIntBase<u64, P>;
struct Barrett {
public:
Barrett(u32 m_) : m(m_), im((u64)(-1) / m_ + 1) {}
constexpr u32 mod() const {
return m;
}
constexpr u32 mul(u32 a, u32 b) const {
u64 z = a;
z *= b;
u64 x = u64((u128(z) * im) >> 64);
u32 v = u32(z - x * m);
if (m <= v) {
v += m;
}
return v;
}
private:
u32 m;
u64 im;
};
template<u32 Id>
struct DynModInt {
public:
constexpr DynModInt() : x(0) {}
template<std::unsigned_integral T>
constexpr DynModInt(T x_) : x(x_ % mod()) {}
template<std::signed_integral T>
constexpr DynModInt(T x_) {
int v = x_ % int(mod());
if (v < 0) {
v += mod();
}
x = v;
}
constexpr static void setMod(u32 m) {
bt = m;
}
static u32 mod() {
return bt.mod();
}
constexpr u32 val() const {
return x;
}
constexpr DynModInt operator-() const {
DynModInt res;
res.x = (x == 0 ? 0 : mod() - x);
return res;
}
constexpr DynModInt inv() const {
auto v = invGcd(x, mod());
assert(v.first == 1);
return v.second;
}
constexpr DynModInt &operator*=(const DynModInt &rhs) & {
x = bt.mul(x, rhs.val());
return *this;
}
constexpr DynModInt &operator+=(const DynModInt &rhs) & {
x += rhs.val();
if (x >= mod()) {
x -= mod();
}
return *this;
}
constexpr DynModInt &operator-=(const DynModInt &rhs) & {
x -= rhs.val();
if (x >= mod()) {
x += mod();
}
return *this;
}
constexpr DynModInt &operator/=(const DynModInt &rhs) & {
return *this *= rhs.inv();
}
friend constexpr DynModInt operator*(DynModInt lhs, const DynModInt &rhs) {
lhs *= rhs;
return lhs;
}
friend constexpr DynModInt operator+(DynModInt lhs, const DynModInt &rhs) {
lhs += rhs;
return lhs;
}
friend constexpr DynModInt operator-(DynModInt lhs, const DynModInt &rhs) {
lhs -= rhs;
return lhs;
}
friend constexpr DynModInt operator/(DynModInt lhs, const DynModInt &rhs) {
lhs /= rhs;
return lhs;
}
friend constexpr std::istream &operator>>(std::istream &is, DynModInt &a) {
i64 i;
is >> i;
a = i;
return is;
}
friend constexpr std::ostream &operator<<(std::ostream &os, const DynModInt &a) {
return os << a.val();
}
friend constexpr bool operator==(const DynModInt &lhs, const DynModInt &rhs) {
return lhs.val() == rhs.val();
}
friend constexpr std::strong_ordering operator<=>(const DynModInt &lhs, const DynModInt &rhs) {
return lhs.val() <=> rhs.val();
}
private:
u32 x;
static Barrett bt;
};
template<u32 Id>
Barrett DynModInt<Id>::bt = 998244353;
using Z = ModInt<998244353>;
状压RMQ(RMQ)
/** 状压RMQ(RMQ)
* 2023-03-02: https://atcoder.jp/contests/joi2022ho/submissions/39351739
* 2023-09-04: https://qoj.ac/submission/163598
* 2024-08-07: https://atcoder.jp/contests/abc365/submissions/56438692
**/
template<class T,
class Cmp = std::less<T>>
struct RMQ {
const Cmp cmp = Cmp();
static constexpr unsigned B = 64;
using u64 = unsigned long long;
int n;
std::vector<std::vector<T>> a;
std::vector<T> pre, suf, ini;
std::vector<u64> stk;
RMQ() {}
RMQ(const std::vector<T> &v) {
init(v);
}
void init(const std::vector<T> &v) {
n = v.size();
pre = suf = ini = v;
stk.resize(n);
if (!n) {
return;
}
const int M = (n - 1) / B + 1;
const int lg = std::__lg(M);
a.assign(lg + 1, std::vector<T>(M));
for (int i = 0; i < M; i++) {
a[0][i] = v[i * B];
for (int j = 1; j < B && i * B + j < n; j++) {
a[0][i] = std::min(a[0][i], v[i * B + j], cmp);
}
}
for (int i = 1; i < n; i++) {
if (i % B) {
pre[i] = std::min(pre[i], pre[i - 1], cmp);
}
}
for (int i = n - 2; i >= 0; i--) {
if (i % B != B - 1) {
suf[i] = std::min(suf[i], suf[i + 1], cmp);
}
}
for (int j = 0; j < lg; j++) {
for (int i = 0; i + (2 << j) <= M; i++) {
a[j + 1][i] = std::min(a[j][i], a[j][i + (1 << j)], cmp);
}
}
for (int i = 0; i < M; i++) {
const int l = i * B;
const int r = std::min(1U * n, l + B);
u64 s = 0;
for (int j = l; j < r; j++) {
while (s && cmp(v[j], v[std::__lg(s) + l])) {
s ^= 1ULL << std::__lg(s);
}
s |= 1ULL << (j - l);
stk[j] = s;
}
}
}
T operator()(int l, int r) {
if (l / B != (r - 1) / B) {
T ans = std::min(suf[l], pre[r - 1], cmp);
l = l / B + 1;
r = r / B;
if (l < r) {
int k = std::__lg(r - l);
ans = std::min({ans, a[k][l], a[k][r - (1 << k)]}, cmp);
}
return ans;
} else {
int x = B * (l / B);
return ini[__builtin_ctzll(stk[r - 1] >> (l - x)) + l];
}
}
};
Splay
Treap
LCT
分数四则运算(Frac)
/** 分数四则运算(Frac)
* 2024-07-30: https://qoj.ac/submission/498911
**/
template<class T>
struct Frac {
T num;
T den;
Frac(T num_, T den_) : num(num_), den(den_) {
if (den < 0) {
den = -den;
num = -num;
}
}
Frac() : Frac(0, 1) {}
Frac(T num_) : Frac(num_, 1) {}
explicit operator double() const {
return 1. * num / den;
}
Frac &operator+=(const Frac &rhs) {
num = num * rhs.den + rhs.num * den;
den *= rhs.den;
return *this;
}
Frac &operator-=(const Frac &rhs) {
num = num * rhs.den - rhs.num * den;
den *= rhs.den;
return *this;
}
Frac &operator*=(const Frac &rhs) {
num *= rhs.num;
den *= rhs.den;
return *this;
}
Frac &operator/=(const Frac &rhs) {
num *= rhs.den;
den *= rhs.num;
if (den < 0) {
num = -num;
den = -den;
}
return *this;
}
friend Frac operator+(Frac lhs, const Frac &rhs) {
return lhs += rhs;
}
friend Frac operator-(Frac lhs, const Frac &rhs) {
return lhs -= rhs;
}
friend Frac operator*(Frac lhs, const Frac &rhs) {
return lhs *= rhs;
}
friend Frac operator/(Frac lhs, const Frac &rhs) {
return lhs /= rhs;
}
friend Frac operator-(const Frac &a) {
return Frac(-a.num, a.den);
}
friend bool operator==(const Frac &lhs, const Frac &rhs) {
return lhs.num * rhs.den == rhs.num * lhs.den;
}
friend bool operator!=(const Frac &lhs, const Frac &rhs) {
return lhs.num * rhs.den != rhs.num * lhs.den;
}
friend bool operator<(const Frac &lhs, const Frac &rhs) {
return lhs.num * rhs.den < rhs.num * lhs.den;
}
friend bool operator>(const Frac &lhs, const Frac &rhs) {
return lhs.num * rhs.den > rhs.num * lhs.den;
}
friend bool operator<=(const Frac &lhs, const Frac &rhs) {
return lhs.num * rhs.den <= rhs.num * lhs.den;
}
friend bool operator>=(const Frac &lhs, const Frac &rhs) {
return lhs.num * rhs.den >= rhs.num * lhs.den;
}
friend std::ostream &operator<<(std::ostream &os, Frac x) {
T g = std::gcd(x.num, x.den);
if (x.den == g) {
return os << x.num / g;
} else {
return os << x.num / g << "/" << x.den / g;
}
}
};
线性基(Basis)
/** 线性基(Basis)
* 2023-12-03: https://codeforces.com/contest/1902/submission/235594491
**/
struct Basis {
int a[20] {};
int t[20] {};
Basis() {
std::fill(t, t + 20, -1);
}
void add(int x, int y = 1E9) {
for (int i = 0; i < 20; i++) {
if (x >> i & 1) {
if (y > t[i]) {
std::swap(a[i], x);
std::swap(t[i], y);
}
x ^= a[i];
}
}
}
bool query(int x, int y = 0) {
for (int i = 0; i < 20; i++) {
if ((x >> i & 1) && t[i] >= y) {
x ^= a[i];
}
}
return x == 0;
}
};
高精度(BigInt)
/** 高精度(BigInt)
* 2023-09-11: https://qoj.ac/submission/176420
**/
constexpr int N = 1000;
struct BigInt {
int a[N];
BigInt(int x = 0) : a{} {
for (int i = 0; x; i++) {
a[i] = x % 10;
x /= 10;
}
}
BigInt &operator*=(int x) {
for (int i = 0; i < N; i++) {
a[i] *= x;
}
for (int i = 0; i < N - 1; i++) {
a[i + 1] += a[i] / 10;
a[i] %= 10;
}
return *this;
}
BigInt &operator/=(int x) {
for (int i = N - 1; i >= 0; i--) {
if (i) {
a[i - 1] += a[i] % x * 10;
}
a[i] /= x;
}
return *this;
}
BigInt &operator+=(const BigInt &x) {
for (int i = 0; i < N; i++) {
a[i] += x.a[i];
if (a[i] >= 10) {
a[i + 1] += 1;
a[i] -= 10;
}
}
return *this;
}
};
std::ostream &operator<<(std::ostream &o, const BigInt &a) {
int t = N - 1;
while (a.a[t] == 0) {
t--;
}
for (int i = t; i >= 0; i--) {
o << a.a[i];
}
return o;
}
五、字符串
点击查看本章节
马拉车(Manacher)
/** 马拉车(Manacher, with string)
* 2024-04-06: https://qoj.ac/submission/380047
* 2024-04-09: https://qoj.ac/submission/384389 【模板】
**/
std::vector<int> manacher(std::string s) {
std::string t = "#";
for (auto c : s) {
t += c;
t += '#';
}
int n = t.size();
std::vector<int> r(n);
for (int i = 0, j = 0; i < n; i++) {
if (2 * j - i >= 0 && j + r[j] > i) {
r[i] = std::min(r[2 * j - i], j + r[j] - i);
}
while (i - r[i] >= 0 && i + r[i] < n && t[i - r[i]] == t[i + r[i]]) {
r[i] += 1;
}
if (i + r[i] > j + r[j]) {
j = i;
}
}
return r;
}
Z 函数
/** Z函数
* 2023-08-11: https://ac.nowcoder.com/acm/contest/view-submission?submissionId=63378373
* 2024-04-09: https://qoj.ac/submission/384405 【模板】
**/
std::vector<int> Z(std::string s) {
int n = s.size();
std::vector<int> z(n + 1);
z[0] = n;
for (int i = 1, j = 1; i < n; i++) {
z[i] = std::max(0, std::min(j + z[j] - i, z[i - j]));
while (i + z[i] < n && s[z[i]] == s[i + z[i]]) {
z[i]++;
}
if (i + z[i] > j + z[j]) {
j = i;
}
}
return z;
}
后缀数组
/** 后缀数组(SuffixArray 旧版)
* 2023-03-14: https://atcoder.jp/contests/discovery2016-qual/submissions/39727257
* 2023-09-05: https://qoj.ac/submission/164483
* 2024-04-09: https://qoj.ac/submission/384415 【模板】
**/
struct SuffixArray {
int n;
std::vector<int> sa, rk, lc;
SuffixArray(const std::string &s) {
n = s.length();
sa.resize(n);
lc.resize(n - 1);
rk.resize(n);
std::iota(sa.begin(), sa.end(), 0);
std::sort(sa.begin(), sa.end(), [&](int a, int b) {return s[a] < s[b];});
rk[sa[0]] = 0;
for (int i = 1; i < n; ++i)
rk[sa[i]] = rk[sa[i - 1]] + (s[sa[i]] != s[sa[i - 1]]);
int k = 1;
std::vector<int> tmp, cnt(n);
tmp.reserve(n);
while (rk[sa[n - 1]] < n - 1) {
tmp.clear();
for (int i = 0; i < k; ++i)
tmp.push_back(n - k + i);
for (auto i : sa)
if (i >= k)
tmp.push_back(i - k);
std::fill(cnt.begin(), cnt.end(), 0);
for (int i = 0; i < n; ++i)
++cnt[rk[i]];
for (int i = 1; i < n; ++i)
cnt[i] += cnt[i - 1];
for (int i = n - 1; i >= 0; --i)
sa[--cnt[rk[tmp[i]]]] = tmp[i];
std::swap(rk, tmp);
rk[sa[0]] = 0;
for (int i = 1; i < n; ++i)
rk[sa[i]] = rk[sa[i - 1]] + (tmp[sa[i - 1]] < tmp[sa[i]] || sa[i - 1] + k == n || tmp[sa[i - 1] + k] < tmp[sa[i] + k]);
k *= 2;
}
for (int i = 0, j = 0; i < n; ++i) {
if (rk[i] == 0) {
j = 0;
} else {
for (j -= j > 0; i + j < n && sa[rk[i] - 1] + j < n && s[i + j] == s[sa[rk[i] - 1] + j]; )
++j;
lc[rk[i] - 1] = j;
}
}
}
};
后缀自动机(SAM 新版)
/** 后缀自动机(SAM 新版)
* 2023-05-27: https://cf.dianhsu.com/gym/104353/submission/207318083
* 2023-09-25: https://qoj.ac/submission/188106
* 2024-04-09: https://qoj.ac/submission/384423 【模板】
* 2024-04-09: https://qoj.ac/submission/384429 【模板】
**/
struct SAM {
static constexpr int ALPHABET_SIZE = 26;
struct Node {
int len;
int link;
std::array<int, ALPHABET_SIZE> next;
Node() : len{}, link{}, next{} {}
};
std::vector<Node> t;
SAM() {
init();
}
void init() {
t.assign(2, Node());
t[0].next.fill(1);
t[0].len = -1;
}
int newNode() {
t.emplace_back();
return t.size() - 1;
}
int extend(int p, int c) {
if (t[p].next[c]) {
int q = t[p].next[c];
if (t[q].len == t[p].len + 1) {
return q;
}
int r = newNode();
t[r].len = t[p].len + 1;
t[r].link = t[q].link;
t[r].next = t[q].next;
t[q].link = r;
while (t[p].next[c] == q) {
t[p].next[c] = r;
p = t[p].link;
}
return r;
}
int cur = newNode();
t[cur].len = t[p].len + 1;
while (!t[p].next[c]) {
t[p].next[c] = cur;
p = t[p].link;
}
t[cur].link = extend(p, c);
return cur;
}
int extend(int p, char c, char offset = 'a') {
return extend(p, c - offset);
}
int next(int p, int x) {
return t[p].next[x];
}
int next(int p, char c, char offset = 'a') {
return next(p, c - 'a');
}
int link(int p) {
return t[p].link;
}
int len(int p) {
return t[p].len;
}
int size() {
return t.size();
}
};
KMP
/** 前缀函数(KMP)
* 2023-11-17: https://qoj.ac/submission/253754
* 2024-04-09: https://qoj.ac/submission/384408 【模板】
**/
std::vector<int> kmp(std::string s) {
int n = s.size();
std::vector<int> f(n + 1);
for (int i = 1, j = 0; i < n; i++) {
while (j && s[i] != s[j]) {
j = f[j];
}
j += (s[i] == s[j]);
f[i + 1] = j;
}
return f;
}