jiangly模板

目录

目录


一、杂类

点击查看本章节

int128 库函数自定义

/**   int128 库函数自定义
 *    2024-08-14: https://ac.nowcoder.com/acm/contest/view-submission?submissionId=70979004&returnHomeType=1&uid=329687984
 *    2024-09-17: https://qoj.ac/submission/571481
**/
using i128 = __int128;
 
std::ostream &operator<<(std::ostream &os, i128 n) {
    if (n == 0) {
        return os << 0;
    }
    std::string s;
    while (n > 0) {
        s += char('0' + n % 10);
        n /= 10;
    }
    std::reverse(s.begin(), s.end());
    return os << s;
}
 
i128 toi128(const std::string &s) {
    i128 n = 0;
    for (auto c : s) {
        n = n * 10 + (c - '0');
    }
    return n;
}
 
i128 sqrti128(i128 n) {
    i128 lo = 0, hi = 1E16;
    while (lo < hi) {
        i128 x = (lo + hi + 1) / 2;
        if (x * x <= n) {
            lo = x;
        } else {
            hi = x - 1;
        }
    }
    return lo;
}

i128 gcd(i128 a, i128 b) {
    while (b) {
        a %= b;
        std::swap(a, b);
    }
    return a;
}

常用库函数重载

using i64 = long long;
using i128 = __int128;

/**   上取整下取整
 *    2023-10-15: https://codeforces.com/contest/293/submission/228297248
**/
i64 ceilDiv(i64 n, i64 m) {
    if (n >= 0) {
        return (n + m - 1) / m;
    } else {
        return n / m;
    }
}
 
i64 floorDiv(i64 n, i64 m) {
    if (n >= 0) {
        return n / m;
    } else {
        return (n - m + 1) / m;
    }
}

/**   最大值赋值
 *    2023-09-30: https://codeforces.com/contest/1874/submission/226069129
**/
template<class T>
void chmax(T &a, T b) {
    if (a < b) {
        a = b;
    }
}

/**   最大公约数
 *    -: -
**/
i128 gcd(i128 a, i128 b) {
    return b ? gcd(b, a % b) : a;
}

/**   精确开平方
 *    2024-03-02: https://qoj.ac/submission/343317
**/
i64 sqrt(i64 n) {
    i64 s = std::sqrt(n);
    while (s * s > n) {
        s--;
    }
    while ((s + 1) * (s + 1) <= n) {
        s++;
    }
    return s;
}

/**   精确开平方
 *    2023-09-19: https://qoj.ac/submission/183430
**/
i64 get(i64 n) {
    i64 u = std::sqrt(2.0L * n);
    while (u * (u + 1) / 2 < n) {
        u++;
    }
    while (u * (u - 1) / 2 + 1 > n) {
        u--;
    }
    return u;
}

/**   求 Log
 *    2024-07-23: https://codeforces.com/contest/1995/submission/272110180
**/
int logi(int a, int b) {
    int t = 0;
    i64 v = 1;
    while (v < b) {
        v *= a;
        t++;
    }
    return t;
}
 
int llog(int a, int b) {
    if (a <= b) {
        int l = logi(a, b);
        return (l == 0 ? 0 : std::__lg(2 * l - 1));
    }
    int l = logi(b, a + 1) - 1;
    assert(l > 0);
    return -std::__lg(l);
}

字符调整

/**   大小写转换、获取字母序
 *    2024-03-16: https://qoj.ac/submission/355156
**/
void rev(std::string &s) {
    int l = s.size();
    for (int i = 1; i < l; i += 2) {
        if (std::isupper(s[i])) {
            s[i] = std::tolower(s[i]);
        } else {
            s[i] = std::toupper(s[i]);
        }
    }
}

int get(char c) {
    int x;
    if (std::islower(c)) {
        x = c - 'a';
    } else {
        x = 26 + c - 'A';
    }
    return x;
}

二分算法

二分算法(整数域)

/**   二分算法(整数域): 前驱
 *    2023-09-18: https://qoj.ac/submission/182628
**/
int lo = 1, hi = 1E9;
while (lo < hi) {
    int m = (lo + hi + 1) / 2;
    if (check(m)) {
        lo = m;
    } else {
        hi = m - 1;
    }
}
std::cout << lo << "\n";

/**   二分算法(整数域):后继
 *    2023-09-18: https://qoj.ac/submission/182752
**/
int lo = 1, hi = n;
while (lo < hi) {
    int m = (lo + hi) / 2;
    if (check(m)) {
        hi = m;
    } else {
        lo = m + 1;
    }
}
std::cout << lo << "\n";

二分算法(实数域)

/**   二分算法(实数域)
 *    2023-10-21: https://qoj.ac/submission/222042
**/
auto check = [&](double t) {
    // write
};

double lo = 0;
double hi = 1E12;
while (hi - lo > std::max(1.0, lo) * eps) {
    double x = (lo + hi) / 2;
    if (check(x)) {
        hi = x;
    } else {
        lo = x;
    }
}

std::cout << lo << "\n";

/**   二分算法(实数域)
 *    2023-09-15: https://qoj.ac/submission/179994
**/
using i64 = long long;
using real = long double;

constexpr real eps = 1E-7;

auto get = [&](const auto &f) {
    real lo = -1E4, hi = 1E4;
    while (hi - lo > 3 * eps) {
        real x1 = (lo + hi - eps) / 2;
        real x2 = (lo + hi + eps) / 2;
        if (f(x1) > f(x2)) {
            lo = x1;
        } else {
            hi = x2;
        }
    }
    return f((lo + hi) / 2);
};

std::cout << get([&](real px) {
    return get([&](real py) {
        // write
    });
}) << "\n";

二、图论与网络

点击查看代码

强连通分量缩点(SCC)

/**   强连通分量缩点(SCC)
 *    2023-06-18: https://codeforces.com/contest/1835/submission/210147209
**/
struct SCC {
    int n;
    std::vector<std::vector<int>> adj;
    std::vector<int> stk;
    std::vector<int> dfn, low, bel;
    int cur, cnt;
    
    SCC() {}
    SCC(int n) {
        init(n);
    }
    
    void init(int n) {
        this->n = n;
        adj.assign(n, {});
        dfn.assign(n, -1);
        low.resize(n);
        bel.assign(n, -1);
        stk.clear();
        cur = cnt = 0;
    }
    
    void addEdge(int u, int v) {
        adj[u].push_back(v);
    }
    
    void dfs(int x) {
        dfn[x] = low[x] = cur++;
        stk.push_back(x);
        
        for (auto y : adj[x]) {
            if (dfn[y] == -1) {
                dfs(y);
                low[x] = std::min(low[x], low[y]);
            } else if (bel[y] == -1) {
                low[x] = std::min(low[x], dfn[y]);
            }
        }
        
        if (dfn[x] == low[x]) {
            int y;
            do {
                y = stk.back();
                bel[y] = cnt;
                stk.pop_back();
            } while (y != x);
            cnt++;
        }
    }
    
    std::vector<int> work() {
        for (int i = 0; i < n; i++) {
            if (dfn[i] == -1) {
                dfs(i);
            }
        }
        return bel;
    }
};

割边与割边缩点(EBCC)

/**   割边与割边缩点(EBCC)
 *    2023-05-11: https://codeforces.com/contest/118/submission/205426518
**/

struct EBCC {
    int n;
    std::vector<std::vector<int>> adj;
    std::vector<int> stk;
    std::vector<int> dfn, low, bel;
    int cur, cnt;
    
    EBCC() {}
    EBCC(int n) {
        init(n);
    }
    
    void init(int n) {
        this->n = n;
        adj.assign(n, {});
        dfn.assign(n, -1);
        low.resize(n);
        bel.assign(n, -1);
        stk.clear();
        cur = cnt = 0;
    }
    
    void addEdge(int u, int v) {
        adj[u].push_back(v);
        adj[v].push_back(u);
    }
    
    void dfs(int x, int p) {
        dfn[x] = low[x] = cur++;
        stk.push_back(x);
        
        for (auto y : adj[x]) {
            if (y == p) {
                continue;
            }
            if (dfn[y] == -1) {
                dfs(y, x);
                low[x] = std::min(low[x], low[y]);
            } else if (bel[y] == -1 && dfn[y] < dfn[x]) {
                low[x] = std::min(low[x], dfn[y]);
            }
        }
        
        if (dfn[x] == low[x]) {
            int y;
            do {
                y = stk.back();
                bel[y] = cnt;
                stk.pop_back();
            } while (y != x);
            cnt++;
        }
    }
    
    std::vector<int> work() {
        dfs(0, -1);
        return bel;
    }
    
    struct Graph {
        int n;
        std::vector<std::pair<int, int>> edges;
        std::vector<int> siz;
        std::vector<int> cnte;
    };
    Graph compress() {
        Graph g;
        g.n = cnt;
        g.siz.resize(cnt);
        g.cnte.resize(cnt);
        for (int i = 0; i < n; i++) {
            g.siz[bel[i]]++;
            for (auto j : adj[i]) {
                if (bel[i] < bel[j]) {
                    g.edges.emplace_back(bel[i], bel[j]);
                } else if (i < j) {
                    g.cnte[bel[i]]++;
                }
            }
        }
        return g;
    }
};

BlockCutTree 点双连通分量

// https://codeforces.com/contest/1763/submission/192845547
// 2023-02-09 13:22:44

struct BlockCutTree {
    int n;
    std::vector<std::vector<int>> adj;
    std::vector<int> dfn, low, stk;
    int cnt, cur;
    std::vector<std::pair<int, int>> edges;
    
    BlockCutTree() {}
    BlockCutTree(int n) {
        init(n);
    }
    
    void init(int n) {
        this->n = n;
        adj.assign(n, {});
        dfn.assign(n, -1);
        low.resize(n);
        stk.clear();
        cnt = cur = 0;
        edges.clear();
    }
    
    void addEdge(int u, int v) {
        adj[u].push_back(v);
        adj[v].push_back(u);
    }
    
    void dfs(int x) {
        stk.push_back(x);
        dfn[x] = low[x] = cur++;
        
        for (auto y : adj[x]) {
            if (dfn[y] == -1) {
                dfs(y);
                low[x] = std::min(low[x], low[y]);
                if (low[y] == dfn[x]) {
                    int v;
                    do {
                        v = stk.back();
                        stk.pop_back();
                        edges.emplace_back(n + cnt, v);
                    } while (v != y);
                    edges.emplace_back(x, n + cnt);
                    cnt++;
                }
            } else {
                low[x] = std::min(low[x], dfn[y]);
            }
        }
    }
    
    std::pair<int, std::vector<std::pair<int, int>>> work() {
        dfs(0);
        return {cnt, edges};
    }
};

二分图最大匹配-匈牙利

// 2023-10-20 10:20:41 
// https://codeforces.com/contest/1592/submission/228888374
std::vector<int> yx(m, -1);
std::vector<bool> vis(n, false);
auto find = [&](auto self, int x) -> bool {
    vis[x] = true;
    for (auto y : adj[x]) {
        if (yx[y] == -1 || (!vis[yx[y]] && self(self, yx[y]))) {
            yx[y] = x;
            return true;
        }
    }
    return false;
};
for (int i = 0; i < n; i++) {
    if (find(find, i)) {
        matching += 1;
        vis.assign(n, false);
    }
}

二分图最大权匹配(MaxAssignment 基于KM)

/**   二分图最大权匹配(MaxAssignment 基于KM)
 *    2022-04-10: https://atcoder.jp/contests/abc247/submissions/30867023
 *    2023-09-21: https://qoj.ac/submission/184824
**/
constexpr int inf = 1E7;
template<class T>
struct MaxAssignment {
    public:
        T solve(int nx, int ny, std::vector<std::vector<T>> a) {
            assert(0 <= nx && nx <= ny);
            assert(int(a.size()) == nx);
            for (int i = 0; i < nx; ++i) {
                assert(int(a[i].size()) == ny);
                for (auto x : a[i])
                    assert(x >= 0);
            }
            
            auto update = [&](int x) {
                for (int y = 0; y < ny; ++y) {
                    if (lx[x] + ly[y] - a[x][y] < slack[y]) {
                        slack[y] = lx[x] + ly[y] - a[x][y];
                        slackx[y] = x;
                    }
                }
            };
            
            costs.resize(nx + 1);
            costs[0] = 0;
            lx.assign(nx, std::numeric_limits<T>::max());
            ly.assign(ny, 0);
            xy.assign(nx, -1);
            yx.assign(ny, -1);
            slackx.resize(ny);
            for (int cur = 0; cur < nx; ++cur) {
                std::queue<int> que;
                visx.assign(nx, false);
                visy.assign(ny, false);
                slack.assign(ny, std::numeric_limits<T>::max());
                p.assign(nx, -1);
                
                for (int x = 0; x < nx; ++x) {
                    if (xy[x] == -1) {
                        que.push(x);
                        visx[x] = true;
                        update(x);
                    }
                }
                
                int ex, ey;
                bool found = false;
                while (!found) {
                    while (!que.empty() && !found) {
                        auto x = que.front();
                        que.pop();
                        for (int y = 0; y < ny; ++y) {
                            if (a[x][y] == lx[x] + ly[y] && !visy[y]) {
                                if (yx[y] == -1) {
                                    ex = x;
                                    ey = y;
                                    found = true;
                                    break;
                                }
                                que.push(yx[y]);
                                p[yx[y]] = x;
                                visy[y] = visx[yx[y]] = true;
                                update(yx[y]);
                            }
                        }
                    }
                    if (found)
                        break;
                    
                    T delta = std::numeric_limits<T>::max();
                    for (int y = 0; y < ny; ++y)
                        if (!visy[y])
                            delta = std::min(delta, slack[y]);
                    for (int x = 0; x < nx; ++x)
                        if (visx[x])
                            lx[x] -= delta;
                    for (int y = 0; y < ny; ++y) {
                        if (visy[y]) {
                            ly[y] += delta;
                        } else {
                            slack[y] -= delta;
                        }
                    }
                    for (int y = 0; y < ny; ++y) {
                        if (!visy[y] && slack[y] == 0) {
                            if (yx[y] == -1) {
                                ex = slackx[y];
                                ey = y;
                                found = true;
                                break;
                            }
                            que.push(yx[y]);
                            p[yx[y]] = slackx[y];
                            visy[y] = visx[yx[y]] = true;
                            update(yx[y]);
                        }
                    }
                }
                
                costs[cur + 1] = costs[cur];
                for (int x = ex, y = ey, ty; x != -1; x = p[x], y = ty) {
                    costs[cur + 1] += a[x][y];
                    if (xy[x] != -1)
                        costs[cur + 1] -= a[x][xy[x]];
                    ty = xy[x];
                    xy[x] = y;
                    yx[y] = x;
                }
            }
            return costs[nx];
        }
        std::vector<int> assignment() {
            return xy;
        }
        std::pair<std::vector<T>, std::vector<T>> labels() {
            return std::make_pair(lx, ly);
        }
        std::vector<T> weights() {
            return costs;
        }
    private:
        std::vector<T> lx, ly, slack, costs;
        std::vector<int> xy, yx, p, slackx;
        std::vector<bool> visx, visy;
};

一般图最大匹配(Graph 带花树算法)【久远】

/**   一般图最大匹配(Graph 带花树算法)
 *    2024-09-13: https://qoj.ac/submission/562904
**/
struct Graph {
    int n;
    std::vector<std::vector<int>> e;
    Graph(int n) : n(n), e(n) {}
    void addEdge(int u, int v) {
        e[u].push_back(v);
        e[v].push_back(u);
    }
    std::vector<int> findMatching(int m, const auto &init) {
        std::vector<int> match(n, -1), vis(n), link(n), f(n), dep(n);
        for (auto [x, y] : init) {
            match[x] = y;
            match[y] = x;
        }
        // disjoint set union
        auto find = [&](int u) {
            while (f[u] != u)
                u = f[u] = f[f[u]];
            return u;
        };
        auto lca = [&](int u, int v) {
            u = find(u);
            v = find(v);
            while (u != v) {
                if (dep[u] < dep[v])
                    std::swap(u, v);
                u = find(link[match[u]]);
            }
            return u;
        };
        std::queue<int> que;
        auto blossom = [&](int u, int v, int p) {
            while (find(u) != p) {
                link[u] = v;
                v = match[u];
                if (vis[v] == 0) {
                    vis[v] = 1;
                    que.push(v);
                }
                f[u] = f[v] = p;
                u = link[v];
            }
        };
        // find an augmenting path starting from u and augment (if exist)
        auto augment = [&](int u) {
            while (!que.empty())
                que.pop();
            std::iota(f.begin(), f.end(), 0);
            // vis = 0 corresponds to inner vertices, vis = 1 corresponds to outer vertices
            std::fill(vis.begin(), vis.end(), -1);
            que.push(u);
            vis[u] = 1;
            dep[u] = 0;
            int y = -1;
            while (!que.empty()){
                int u = que.front();
                que.pop();
                if (u >= m) {
                    y = u;
                }
                for (auto v : e[u]) {
                    if (vis[v] == -1) {
                        vis[v] = 0;
                        link[v] = u;
                        dep[v] = dep[u] + 1;
                        // found an augmenting path
                        if (match[v] == -1) {
                            for (int x = v, y = u, temp; y != -1; x = temp, y = x == -1 ? -1 : link[x]) {
                                temp = match[y];
                                match[x] = y;
                                match[y] = x;
                            }
                            return;
                        }
                        vis[match[v]] = 1;
                        dep[match[v]] = dep[u] + 2;
                        que.push(match[v]);
                    } else if (vis[v] == 1 && find(v) != find(u)) {
                        // found a blossom
                        int p = lca(u, v);
                        blossom(u, v, p);
                        blossom(v, u, p);
                    }
                }
            }
            if (y != -1) {
                for (int x = -1, temp; y != -1; x = temp, y = x == -1 ? -1 : link[x]) {
                    temp = match[y];
                    if (x != -1) {
                        match[x] = y;
                    }
                    match[y] = x;
                }
            }
        };
        // find a maximal matching greedily (decrease constant)
        // auto greedy = [&]() {
        //     for (int u = 0; u < n; ++u) {
        //         if (match[u] != -1)
        //             continue;
        //         for (auto v : e[u]) {
        //             if (match[v] == -1) {
        //                 match[u] = v;
        //                 match[v] = u;
        //                 break;
        //             }
        //         }
        //     }
        // };
        // greedy();
        for (int u = 0; u < m; ++u)
            if (match[u] == -1)
                augment(u);
        return match;
    }
};

/**   一般图最大匹配(Graph 带花树算法)【久远】
 *    2021-12-24: https://codeforces.com/contest/1615/submission/140509278
 *    2022-08-28: https://codeforces.com/gym/103260/submission/169975982
**/
struct Graph {
    int n;
    std::vector<std::vector<int>> e;
    Graph(int n) : n(n), e(n) {}
    void addEdge(int u, int v) {
        e[u].push_back(v);
        e[v].push_back(u);
    }
    std::vector<int> findMatching() {
        std::vector<int> match(n, -1), vis(n), link(n), f(n), dep(n);
        
        // disjoint set union
        auto find = [&](int u) {
            while (f[u] != u)
                u = f[u] = f[f[u]];
            return u;
        };
        
        auto lca = [&](int u, int v) {
            u = find(u);
            v = find(v);
            while (u != v) {
                if (dep[u] < dep[v])
                    std::swap(u, v);
                u = find(link[match[u]]);
            }
            return u;
        };
        
        std::queue<int> que;
        auto blossom = [&](int u, int v, int p) {
            while (find(u) != p) {
                link[u] = v;
                v = match[u];
                if (vis[v] == 0) {
                    vis[v] = 1;
                    que.push(v);
                }
                f[u] = f[v] = p;
                u = link[v];
            }
        };
        
        // find an augmenting path starting from u and augment (if exist)
        auto augment = [&](int u) {
            
            while (!que.empty())
                que.pop();
            
            std::iota(f.begin(), f.end(), 0);
            
            // vis = 0 corresponds to inner vertices, vis = 1 corresponds to outer vertices
            std::fill(vis.begin(), vis.end(), -1);
            
            que.push(u);
            vis[u] = 1;
            dep[u] = 0;
            
            while (!que.empty()){
                int u = que.front();
                que.pop();
                for (auto v : e[u]) {
                    if (vis[v] == -1) {
                        
                        vis[v] = 0;
                        link[v] = u;
                        dep[v] = dep[u] + 1;
                        
                        // found an augmenting path
                        if (match[v] == -1) {
                            for (int x = v, y = u, temp; y != -1; x = temp, y = x == -1 ? -1 : link[x]) {
                                temp = match[y];
                                match[x] = y;
                                match[y] = x;
                            }
                            return;
                        }
                        
                        vis[match[v]] = 1;
                        dep[match[v]] = dep[u] + 2;
                        que.push(match[v]);
                        
                    } else if (vis[v] == 1 && find(v) != find(u)) {
                        // found a blossom
                        int p = lca(u, v);
                        blossom(u, v, p);
                        blossom(v, u, p);
                    }
                }
            }
            
        };
        
        // find a maximal matching greedily (decrease constant)
        auto greedy = [&]() {
            
            for (int u = 0; u < n; ++u) {
                if (match[u] != -1)
                    continue;
                for (auto v : e[u]) {
                    if (match[v] == -1) {
                        match[u] = v;
                        match[v] = u;
                        break;
                    }
                }
            }
        };
        
        greedy();
        
        for (int u = 0; u < n; ++u)
            if (match[u] == -1)
                augment(u);
        
        return match;
    }
};

TwoSat(2-Sat)

/**   TwoSat(2-Sat)
 *    2023-09-29: https://atcoder.jp/contests/arc161/submissions/46031530
**/
struct TwoSat {
    int n;
    std::vector<std::vector<int>> e;
    std::vector<bool> ans;
    TwoSat(int n) : n(n), e(2 * n), ans(n) {}
    void addClause(int u, bool f, int v, bool g) {
        e[2 * u + !f].push_back(2 * v + g);
        e[2 * v + !g].push_back(2 * u + f);
    }
    bool satisfiable() {
        std::vector<int> id(2 * n, -1), dfn(2 * n, -1), low(2 * n, -1);
        std::vector<int> stk;
        int now = 0, cnt = 0;
        std::function<void(int)> tarjan = [&](int u) {
            stk.push_back(u);
            dfn[u] = low[u] = now++;
            for (auto v : e[u]) {
                if (dfn[v] == -1) {
                    tarjan(v);
                    low[u] = std::min(low[u], low[v]);
                } else if (id[v] == -1) {
                    low[u] = std::min(low[u], dfn[v]);
                }
            }
            if (dfn[u] == low[u]) {
                int v;
                do {
                    v = stk.back();
                    stk.pop_back();
                    id[v] = cnt;
                } while (v != u);
                ++cnt;
            }
        };
        for (int i = 0; i < 2 * n; ++i) if (dfn[i] == -1) tarjan(i);
        for (int i = 0; i < n; ++i) {
            if (id[2 * i] == id[2 * i + 1]) return false;
            ans[i] = id[2 * i] > id[2 * i + 1];
        }
        return true;
    }
    std::vector<bool> answer() { return ans; }
};

最大流

最大流(Flow 旧版其一,整数应用)

/**   最大流(Flow 旧版其一,整数应用)
 *    2022-09-03: https://codeforces.com/contest/1717/submission/170688062
**/
template<class T>
struct Flow {
    const int n;
    struct Edge {
        int to;
        T cap;
        Edge(int to, T cap) : to(to), cap(cap) {}
    };
    std::vector<Edge> e;
    std::vector<std::vector<int>> g;
    std::vector<int> cur, h;
    Flow(int n) : n(n), g(n) {}
    
    bool bfs(int s, int t) {
        h.assign(n, -1);
        std::queue<int> que;
        h[s] = 0;
        que.push(s);
        while (!que.empty()) {
            const int u = que.front();
            que.pop();
            for (int i : g[u]) {
                auto [v, c] = e[i];
                if (c > 0 && h[v] == -1) {
                    h[v] = h[u] + 1;
                    if (v == t) {
                        return true;
                    }
                    que.push(v);
                }
            }
        }
        return false;
    }
    
    T dfs(int u, int t, T f) {
        if (u == t) {
            return f;
        }
        auto r = f;
        for (int &i = cur[u]; i < int(g[u].size()); ++i) {
            const int j = g[u][i];
            auto [v, c] = e[j];
            if (c > 0 && h[v] == h[u] + 1) {
                auto a = dfs(v, t, std::min(r, c));
                e[j].cap -= a;
                e[j ^ 1].cap += a;
                r -= a;
                if (r == 0) {
                    return f;
                }
            }
        }
        return f - r;
    }
    void addEdge(int u, int v, T c) {
        g[u].push_back(e.size());
        e.emplace_back(v, c);
        g[v].push_back(e.size());
        e.emplace_back(u, 0);
    }
    T maxFlow(int s, int t) {
        T ans = 0;
        while (bfs(s, t)) {
            cur.assign(n, 0);
            ans += dfs(s, t, std::numeric_limits<T>::max());
        }
        return ans;
    }
};

最大流(Flow 旧版其二,浮点数应用)

/**   最大流(Flow 旧版其二,浮点数应用)
 *    2022-04-09: https://cf.dianhsu.com/gym/104288/submission/201412765
**/
template<class T>
struct Flow {
    const int n;
    struct Edge {
        int to;
        T cap;
        Edge(int to, T cap) : to(to), cap(cap) {}
    };
    std::vector<Edge> e;
    std::vector<std::vector<int>> g;
    std::vector<int> cur, h;
    Flow(int n) : n(n), g(n) {}
    
    bool bfs(int s, int t) {
        h.assign(n, -1);
        std::queue<int> que;
        h[s] = 0;
        que.push(s);
        while (!que.empty()) {
            const int u = que.front();
            que.pop();
            for (int i : g[u]) {
                auto [v, c] = e[i];
                if (c > 0 && h[v] == -1) {
                    h[v] = h[u] + 1;
                    if (v == t) {
                        return true;
                    }
                    que.push(v);
                }
            }
        }
        return false;
    }
    
    T dfs(int u, int t, T f) {
        if (u == t) {
            return f;
        }
        auto r = f;
        double res = 0;
        for (int &i = cur[u]; i < int(g[u].size()); ++i) {
            const int j = g[u][i];
            auto [v, c] = e[j];
            if (c > 0 && h[v] == h[u] + 1) {
                auto a = dfs(v, t, std::min(r, c));
                res += a;
                e[j].cap -= a;
                e[j ^ 1].cap += a;
                r -= a;
                if (r == 0) {
                    return f;
                }
            }
        }
        return res;
    }
    void addEdge(int u, int v, T c) {
        g[u].push_back(e.size());
        e.emplace_back(v, c);
        g[v].push_back(e.size());
        e.emplace_back(u, 0);
    }
    T maxFlow(int s, int t) {
        T ans = 0;
        while (bfs(s, t)) {
            cur.assign(n, 0);
            ans += dfs(s, t, 1E100);
        }
        return ans;
    }
};

最大流(MaxFlow 新版)

/**   最大流(MaxFlow 新版)
 *    2023-07-21: https://ac.nowcoder.com/acm/contest/view-submission?submissionId=62915815
**/
constexpr int inf = 1E9;
template<class T>
struct MaxFlow {
    struct _Edge {
        int to;
        T cap;
        _Edge(int to, T cap) : to(to), cap(cap) {}
    };
    
    int n;
    std::vector<_Edge> e;
    std::vector<std::vector<int>> g;
    std::vector<int> cur, h;
    
    MaxFlow() {}
    MaxFlow(int n) {
        init(n);
    }
    
    void init(int n) {
        this->n = n;
        e.clear();
        g.assign(n, {});
        cur.resize(n);
        h.resize(n);
    }
    
    bool bfs(int s, int t) {
        h.assign(n, -1);
        std::queue<int> que;
        h[s] = 0;
        que.push(s);
        while (!que.empty()) {
            const int u = que.front();
            que.pop();
            for (int i : g[u]) {
                auto [v, c] = e[i];
                if (c > 0 && h[v] == -1) {
                    h[v] = h[u] + 1;
                    if (v == t) {
                        return true;
                    }
                    que.push(v);
                }
            }
        }
        return false;
    }
    
    T dfs(int u, int t, T f) {
        if (u == t) {
            return f;
        }
        auto r = f;
        for (int &i = cur[u]; i < int(g[u].size()); ++i) {
            const int j = g[u][i];
            auto [v, c] = e[j];
            if (c > 0 && h[v] == h[u] + 1) {
                auto a = dfs(v, t, std::min(r, c));
                e[j].cap -= a;
                e[j ^ 1].cap += a;
                r -= a;
                if (r == 0) {
                    return f;
                }
            }
        }
        return f - r;
    }
    void addEdge(int u, int v, T c) {
        g[u].push_back(e.size());
        e.emplace_back(v, c);
        g[v].push_back(e.size());
        e.emplace_back(u, 0);
    }
    T flow(int s, int t) {
        T ans = 0;
        while (bfs(s, t)) {
            cur.assign(n, 0);
            ans += dfs(s, t, std::numeric_limits<T>::max());
        }
        return ans;
    }
    
    std::vector<bool> minCut() {
        std::vector<bool> c(n);
        for (int i = 0; i < n; i++) {
            c[i] = (h[i] != -1);
        }
        return c;
    }
    
    struct Edge {
        int from;
        int to;
        T cap;
        T flow;
    };
    std::vector<Edge> edges() {
        std::vector<Edge> a;
        for (int i = 0; i < e.size(); i += 2) {
            Edge x;
            x.from = e[i + 1].to;
            x.to = e[i].to;
            x.cap = e[i].cap + e[i + 1].cap;
            x.flow = e[i + 1].cap;
            a.push_back(x);
        }
        return a;
    }
};

费用流

费用流(MCFGraph 旧版)

/**   费用流(MCFGraph 旧版)
 *    2022-12-12: https://codeforces.com/contest/1766/submission/184974697
 *
 *    下方为最小费用**最大流**模板,如需求解最小费用**可行流**,需要去除建边限制
**/
struct MCFGraph {
    struct Edge {
        int v, c, f;
        Edge(int v, int c, int f) : v(v), c(c), f(f) {}
    };
    const int n;
    std::vector<Edge> e;
    std::vector<std::vector<int>> g;
    std::vector<i64> h, dis;
    std::vector<int> pre;
    bool dijkstra(int s, int t) {
        dis.assign(n, std::numeric_limits<i64>::max());
        pre.assign(n, -1);
        std::priority_queue<std::pair<i64, int>, std::vector<std::pair<i64, int>>, std::greater<std::pair<i64, int>>> que;
        dis[s] = 0;
        que.emplace(0, s);
        while (!que.empty()) {
            i64 d = que.top().first;
            int u = que.top().second;
            que.pop();
            if (dis[u] < d) continue;
            for (int i : g[u]) {
                int v = e[i].v;
                int c = e[i].c;
                int f = e[i].f;
                if (c > 0 && dis[v] > d + h[u] - h[v] + f) {
                    dis[v] = d + h[u] - h[v] + f;
                    pre[v] = i;
                    que.emplace(dis[v], v);
                }
            }
        }
        return dis[t] != std::numeric_limits<i64>::max();
    }
    MCFGraph(int n) : n(n), g(n) {}
    void addEdge(int u, int v, int c, int f) {
        // if (f < 0) {
            g[u].push_back(e.size());
            e.emplace_back(v, 0, f);
            g[v].push_back(e.size());
            e.emplace_back(u, c, -f);
        // } else {
        //     g[u].push_back(e.size());
        //     e.emplace_back(v, c, f);
        //     g[v].push_back(e.size());
        //     e.emplace_back(u, 0, -f);
        // }
    }
    std::pair<int, i64> flow(int s, int t) {
        int flow = 0;
        i64 cost = 0;
        h.assign(n, 0);
        while (dijkstra(s, t)) {
            for (int i = 0; i < n; ++i) h[i] += dis[i];
            int aug = std::numeric_limits<int>::max();
            for (int i = t; i != s; i = e[pre[i] ^ 1].v) aug = std::min(aug, e[pre[i]].c);
            for (int i = t; i != s; i = e[pre[i] ^ 1].v) {
                e[pre[i]].c -= aug;
                e[pre[i] ^ 1].c += aug;
            }
            flow += aug;
            cost += i64(aug) * h[t];
        }
        return std::make_pair(flow, cost);
    }
};

费用流(MinCostFlow 新版)

/**   费用流(MinCostFlow 新版)
 *    2023-11-09: https://qoj.ac/submission/244680
**/
template<class T>
struct MinCostFlow {
    struct _Edge {
        int to;
        T cap;
        T cost;
        _Edge(int to_, T cap_, T cost_) : to(to_), cap(cap_), cost(cost_) {}
    };
    int n;
    std::vector<_Edge> e;
    std::vector<std::vector<int>> g;
    std::vector<T> h, dis;
    std::vector<int> pre;
    bool dijkstra(int s, int t) {
        dis.assign(n, std::numeric_limits<T>::max());
        pre.assign(n, -1);
        std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>, std::greater<std::pair<T, int>>> que;
        dis[s] = 0;
        que.emplace(0, s);
        while (!que.empty()) {
            T d = que.top().first;
            int u = que.top().second;
            que.pop();
            if (dis[u] != d) {
                continue;
            }
            for (int i : g[u]) {
                int v = e[i].to;
                T cap = e[i].cap;
                T cost = e[i].cost;
                if (cap > 0 && dis[v] > d + h[u] - h[v] + cost) {
                    dis[v] = d + h[u] - h[v] + cost;
                    pre[v] = i;
                    que.emplace(dis[v], v);
                }
            }
        }
        return dis[t] != std::numeric_limits<T>::max();
    }
    MinCostFlow() {}
    MinCostFlow(int n_) {
        init(n_);
    }
    void init(int n_) {
        n = n_;
        e.clear();
        g.assign(n, {});
    }
    void addEdge(int u, int v, T cap, T cost) {
        g[u].push_back(e.size());
        e.emplace_back(v, cap, cost);
        g[v].push_back(e.size());
        e.emplace_back(u, 0, -cost);
    }
    std::pair<T, T> flow(int s, int t) {
        T flow = 0;
        T cost = 0;
        h.assign(n, 0);
        while (dijkstra(s, t)) {
            for (int i = 0; i < n; ++i) {
                h[i] += dis[i];
            }
            T aug = std::numeric_limits<int>::max();
            for (int i = t; i != s; i = e[pre[i] ^ 1].to) {
                aug = std::min(aug, e[pre[i]].cap);
            }
            for (int i = t; i != s; i = e[pre[i] ^ 1].to) {
                e[pre[i]].cap -= aug;
                e[pre[i] ^ 1].cap += aug;
            }
            flow += aug;
            cost += aug * h[t];
        }
        return std::make_pair(flow, cost);
    }
    struct Edge {
        int from;
        int to;
        T cap;
        T cost;
        T flow;
    };
    std::vector<Edge> edges() {
        std::vector<Edge> a;
        for (int i = 0; i < e.size(); i += 2) {
            Edge x;
            x.from = e[i + 1].to;
            x.to = e[i].to;
            x.cap = e[i].cap + e[i + 1].cap;
            x.cost = e[i].cost;
            x.flow = e[i + 1].cap;
            a.push_back(x);
        }
        return a;
    }
};

树链剖分(HLD)

/**   树链剖分(HLD)
 *    2023-08-31: https://codeforces.com/contest/1863/submission/221214363
**/
struct HLD {
    int n;
    std::vector<int> siz, top, dep, parent, in, out, seq;
    std::vector<std::vector<int>> adj;
    int cur;
    
    HLD() {}
    HLD(int n) {
        init(n);
    }
    void init(int n) {
        this->n = n;
        siz.resize(n);
        top.resize(n);
        dep.resize(n);
        parent.resize(n);
        in.resize(n);
        out.resize(n);
        seq.resize(n);
        cur = 0;
        adj.assign(n, {});
    }
    void addEdge(int u, int v) {
        adj[u].push_back(v);
        adj[v].push_back(u);
    }
    void work(int root = 0) {
        top[root] = root;
        dep[root] = 0;
        parent[root] = -1;
        dfs1(root);
        dfs2(root);
    }
    void dfs1(int u) {
        if (parent[u] != -1) {
            adj[u].erase(std::find(adj[u].begin(), adj[u].end(), parent[u]));
        }
        
        siz[u] = 1;
        for (auto &v : adj[u]) {
            parent[v] = u;
            dep[v] = dep[u] + 1;
            dfs1(v);
            siz[u] += siz[v];
            if (siz[v] > siz[adj[u][0]]) {
                std::swap(v, adj[u][0]);
            }
        }
    }
    void dfs2(int u) {
        in[u] = cur++;
        seq[in[u]] = u;
        for (auto v : adj[u]) {
            top[v] = v == adj[u][0] ? top[u] : v;
            dfs2(v);
        }
        out[u] = cur;
    }
    int lca(int u, int v) {
        while (top[u] != top[v]) {
            if (dep[top[u]] > dep[top[v]]) {
                u = parent[top[u]];
            } else {
                v = parent[top[v]];
            }
        }
        return dep[u] < dep[v] ? u : v;
    }
    
    int dist(int u, int v) {
        return dep[u] + dep[v] - 2 * dep[lca(u, v)];
    }
    
    int jump(int u, int k) {
        if (dep[u] < k) {
            return -1;
        }
        
        int d = dep[u] - k;
        
        while (dep[top[u]] > d) {
            u = parent[top[u]];
        }
        
        return seq[in[u] - dep[u] + d];
    }
    
    bool isAncester(int u, int v) {
        return in[u] <= in[v] && in[v] < out[u];
    }
    
    int rootedParent(int u, int v) {
        std::swap(u, v);
        if (u == v) {
            return u;
        }
        if (!isAncester(u, v)) {
            return parent[u];
        }
        auto it = std::upper_bound(adj[u].begin(), adj[u].end(), v, [&](int x, int y) {
            return in[x] < in[y];
        }) - 1;
        return *it;
    }
    
    int rootedSize(int u, int v) {
        if (u == v) {
            return n;
        }
        if (!isAncester(v, u)) {
            return siz[v];
        }
        return n - siz[rootedParent(u, v)];
    }
    
    int rootedLca(int a, int b, int c) {
        return lca(a, b) ^ lca(b, c) ^ lca(c, a);
    }
};

三、数论、几何、多项式

点击查看代码

快速幂

/**   快速幂 - 普通版
 *    2023-10-09: https://atcoder.jp/contests/tenka1-2017/submissions/46411797
**/
int power(int a, i64 b, int p) {
    int res = 1;
    for (; b; b /= 2, a = 1LL * a * a % p) {
        if (b % 2) {
            res = 1LL * res * a % p;
        }
    }
    return res;
}

/**   快速幂 - 手写乘法
 *    2023-09-27: https://qoj.ac/submission/189343
**/
using i64 = long long;

i64 mul(i64 a, i64 b, i64 p) {
    i64 c = a * b - i64(1.0L * a * b / p) * p;
    c %= p;
    if (c < 0) {
        c += p;
    }
    return c;
}

i64 power(i64 a, i64 b, i64 p) {
    i64 res = 1;
    for (; b; b /= 2, a = mul(a, a, p)) {
        if (b % 2) {
            res = mul(res, a, p);
        }
    }
    return res;
}

基姆拉尔森公式

/**   基姆拉尔森公式
 *    2023-09-05: https://qoj.ac/submission/164735
**/
const int d[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

bool isLeap(int y) {
    return y % 400 == 0 || (y % 4 == 0 && y % 100 != 0);
}

int daysInMonth(int y, int m) {
    return d[m - 1] + (isLeap(y) && m == 2);
}

int getDay(int y, int m, int d) {
    int ans = 0;
    for (int i = 1970; i < y; i++) {
        ans += 365 + isLeap(i);
    }
    for (int i = 1; i < m; i++) {
        ans += daysInMonth(y, i);
    }
    ans += d;
    return (ans + 2) % 7 + 1;
}

欧拉筛

/**   欧拉筛
 *    2023-11-14: https://qoj.ac/submission/251234
**/
std::vector<int> minp, primes;

void sieve(int n) {
    minp.assign(n + 1, 0);
    primes.clear();
    
    for (int i = 2; i <= n; i++) {
        if (minp[i] == 0) {
            minp[i] = i;
            primes.push_back(i);
        }
        
        for (auto p : primes) {
            if (i * p > n) {
                break;
            }
            minp[i * p] = p;
            if (p == minp[i]) {
                break;
            }
        }
    }
}

bool isprime(int n) {
    return minp[n] == n;
}

/**   欧拉筛
 *    2023-03-22: https://yukicoder.me/submissions/851524
**/
void sieve(int n) {
    minp.assign(n + 1, 0);
    phi.assign(n + 1, 0);
    primes.clear();
    
    for (int i = 2; i <= n; i++) {
        if (minp[i] == 0) {
            minp[i] = i;
            phi[i] = i - 1;
            primes.push_back(i);
        }
        
        for (auto p : primes) {
            if (i * p > n) {
                break;
            }
            minp[i * p] = p;
            if (p == minp[i]) {
                phi[i * p] = phi[i] * p;
                break;
            }
            phi[i * p] = phi[i] * (p - 1);
        }
    }
    for (int i = 2; i <= n; i++) {
        phi[i] += phi[i - 1];
    }
}

莫比乌斯函数筛(莫比乌斯反演)

/**   莫比乌斯函数筛(莫比乌斯反演)
 *    2023-03-04: https://atcoder.jp/contests/tupc2022/submissions/39391116
 *    2023-04-07: https://yukicoder.me/submissions/857472
**/
std::unordered_map<int, Z> fMu;

std::vector<int> minp, primes, phi, mu;
std::vector<i64> sphi;

void sieve(int n) {
    minp.assign(n + 1, 0);
    phi.assign(n + 1, 0);
    sphi.assign(n + 1, 0);
    mu.assign(n + 1, 0);
    primes.clear();
    phi[1] = 1;
    mu[1] = 1;
    
    for (int i = 2; i <= n; i++) {
        if (minp[i] == 0) {
            minp[i] = i;
            phi[i] = i - 1;
            mu[i] = -1;
            primes.push_back(i);
        }
        
        for (auto p : primes) {
            if (i * p > n) {
                break;
            }
            minp[i * p] = p;
            if (p == minp[i]) {
                phi[i * p] = phi[i] * p;
                break;
            }
            phi[i * p] = phi[i] * (p - 1);
            mu[i * p] = -mu[i];
        }
    }
    
    for (int i = 1; i <= n; i++) {
        sphi[i] = sphi[i - 1] + phi[i];
        mu[i] += mu[i - 1];
    }
}

Z sumMu(int n) {
    if (n <= N) {
        return mu[n];
    }
    if (fMu.count(n)) {
        return fMu[n];
    }
    if (n == 0) {
        return 0;
    }
    Z ans = 1;
    for (int l = 2, r; l <= n; l = r + 1) {
        r = n / (n / l);
        ans -= (r - l + 1) * sumMu(n / l);
    }
    return ans;
}

扩展欧几里得(exgcd)

/**   扩展欧几里得(exgcd)
 *    2024-08-07: https://codeforces.com/contest/1993/submission/275110715
**/
i64 exgcd(i64 a, i64 b, i64 &x, i64 &y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    }
    i64 g = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return g;
}
 
// ax + b = 0 (mod m)
std::pair<i64, i64> sol(i64 a, i64 b, i64 m) {
    assert(m > 0);
    b *= -1;
    i64 x, y;
    i64 g = exgcd(a, m, x, y);
    if (g < 0) {
        g *= -1;
        x *= -1;
        y *= -1;
    }
    if (b % g != 0) {
        return {-1, -1};
    }
    x = x * (b / g) % (m / g);
    if (x < 0) {
        x += m / g;
    }
    return {x, m / g};
}

/**   扩展欧几里得(exgcd)
 *    2023-09-05: https://qoj.ac/submission/165983
**/
std::array<i64, 3> exgcd(i64 a, i64 b) {
    if (!b) {
        return {a, 1, 0};
    }
    auto [g, x, y] = exgcd(b, a % b);
    return {g, y, x - a / b * y};
}

欧拉函数

/**   欧拉函数(求解单个数的欧拉函数)
 *    2023-10-09: https://atcoder.jp/contests/tenka1-2017/submissions/46411797
**/
int phi(int n) {
    int res = n;
    for (int i = 2; i * i <= n; i++) {
        if (n % i == 0) {
            while (n % i == 0) {
                n /= i;
            }
            res = res / i * (i - 1);
        }
    }
    if (n > 1) {
        res = res / n * (n - 1);
    }
    return res;
}

/**   欧拉函数(求解全部数的欧拉函数)
 *    2023-09-24: https://qoj.ac/submission/187055
**/
constexpr int N = 1E7;
constexpr int P = 1000003;

bool isprime[N + 1];
int phi[N + 1];
std::vector<int> primes;

std::fill(isprime + 2, isprime + N + 1, true);
phi[1] = 1;
for (int i = 2; i <= N; i++) {
    if (isprime[i]) {
        primes.push_back(i);
        phi[i] = i - 1;
    }
    for (auto p : primes) {
        if (i * p > N) {
            break;
        }
        isprime[i * p] = false;
        if (i % p == 0) {
            phi[i * p] = phi[i] * p;
            break;
        }
        phi[i * p] = phi[i] * (p - 1);
    }
}

组合数

组合数(小范围预处理,逆元+杨辉三角)

/**   组合数(小范围预处理,逆元+杨辉三角)
 *    2024-03-14: https://qoj.ac/submission/353877
 *    2023-10-06: https://qoj.ac/submission/203196
**/
constexpr int P = 1000000007;
constexpr int L = 10000;

int fac[L + 1], invfac[L + 1];
int sumbinom[L + 1][7];

int binom(int n, int m) {
    if (n < m || m < 0) {
        return 0;
    }
    return 1LL * fac[n] * invfac[m] % P * invfac[n - m] % P;
}

int power(int a, int b) {
    int res = 1;
    for (; b; b /= 2, a = 1LL * a * a % P) {
        if (b % 2) {
            res = 1LL * res * a % P;
        }
    }
    return res;
}

int main() {
    fac[0] = 1;
    for (int i = 1; i <= L; i++) {
        fac[i] = 1LL * fac[i - 1] * i % P;
    }
    invfac[L] = power(fac[L], P - 2);
    for (int i = L; i; i--) {
        invfac[i - 1] = 1LL * invfac[i] * i % P;
    }

    sumbinom[0][0] = 1;
    for (int i = 1; i <= L; i++) {
        for (int j = 0; j < 7; j++) {
            sumbinom[i][j] = (sumbinom[i - 1][j] + sumbinom[i - 1][(j + 6) % 7]) % P;
        }
    }
}

组合数(Comb, with. ModIntBase)

/**   组合数(Comb, with. ModIntBase)
 *    2024-08-06: https://codeforces.com/contest/1999/submission/274744751
**/
struct Comb {
    int n;
    std::vector<Z> _fac;
    std::vector<Z> _invfac;
    std::vector<Z> _inv;
    
    Comb() : n{0}, _fac{1}, _invfac{1}, _inv{0} {}
    Comb(int n) : Comb() {
        init(n);
    }
    
    void init(int m) {
        if (m <= n) return;
        _fac.resize(m + 1);
        _invfac.resize(m + 1);
        _inv.resize(m + 1);
        
        for (int i = n + 1; i <= m; i++) {
            _fac[i] = _fac[i - 1] * i;
        }
        _invfac[m] = _fac[m].inv();
        for (int i = m; i > n; i--) {
            _invfac[i - 1] = _invfac[i] * i;
            _inv[i] = _invfac[i] * _fac[i - 1];
        }
        n = m;
    }
    
    Z fac(int m) {
        if (m > n) init(2 * m);
        return _fac[m];
    }
    Z invfac(int m) {
        if (m > n) init(2 * m);
        return _invfac[m];
    }
    Z inv(int m) {
        if (m > n) init(2 * m);
        return _inv[m];
    }
    Z binom(int n, int m) {
        if (n < m || m < 0) return 0;
        return fac(n) * invfac(m) * invfac(n - m);
    }
} comb;

素数测试与因式分解(Miller-Rabin & Pollard-Rho)

/**   素数测试与因式分解(Miller-Rabin & Pollard-Rho)
 *    2023-05-16: https://cf.dianhsu.com/gym/104354/submission/206130894
**/
i64 mul(i64 a, i64 b, i64 m) {
    return static_cast<__int128>(a) * b % m;
}
i64 power(i64 a, i64 b, i64 m) {
    i64 res = 1 % m;
    for (; b; b >>= 1, a = mul(a, a, m))
        if (b & 1)
            res = mul(res, a, m);
    return res;
}
bool isprime(i64 n) {
    if (n < 2)
        return false;
    static constexpr int A[] = {2, 3, 5, 7, 11, 13, 17, 19, 23};
    int s = __builtin_ctzll(n - 1);
    i64 d = (n - 1) >> s;
    for (auto a : A) {
        if (a == n)
            return true;
        i64 x = power(a, d, n);
        if (x == 1 || x == n - 1)
            continue;
        bool ok = false;
        for (int i = 0; i < s - 1; ++i) {
            x = mul(x, x, n);
            if (x == n - 1) {
                ok = true;
                break;
            }
        }
        if (!ok)
            return false;
    }
    return true;
}
std::vector<i64> factorize(i64 n) {
    std::vector<i64> p;
    std::function<void(i64)> f = [&](i64 n) {
        if (n <= 10000) {
            for (int i = 2; i * i <= n; ++i)
                for (; n % i == 0; n /= i)
                    p.push_back(i);
            if (n > 1)
                p.push_back(n);
            return;
        }
        if (isprime(n)) {
            p.push_back(n);
            return;
        }
        auto g = [&](i64 x) {
            return (mul(x, x, n) + 1) % n;
        };
        i64 x0 = 2;
        while (true) {
            i64 x = x0;
            i64 y = x0;
            i64 d = 1;
            i64 power = 1, lam = 0;
            i64 v = 1;
            while (d == 1) {
                y = g(y);
                ++lam;
                v = mul(v, std::abs(x - y), n);
                if (lam % 127 == 0) {
                    d = std::gcd(v, n);
                    v = 1;
                }
                if (power == lam) {
                    x = y;
                    power *= 2;
                    lam = 0;
                    d = std::gcd(v, n);
                    v = 1;
                }
            }
            if (d != n) {
                f(d);
                f(n / d);
                return;
            }
            ++x0;
        }
    };
    f(n);
    std::sort(p.begin(), p.end());
    return p;
}

平面几何


立体几何

静态凸包

多项式

生成函数

自适应辛普森法(Simpson)

矩阵(Matrix)

高斯消元法(gaussian elimination)【久远】

/**   高斯消元法(gaussian elimination)【久远】
 *    2020-08-30: https://codeforces.com/gym/102129/submission/91334513
**/
std::vector<int> operator*(const std::vector<int> &lhs, const std::vector<int> &rhs) {
    std::vector<int> res(lhs.size() + rhs.size() - 1);
    for (int i = 0; i < int(lhs.size()); ++i)
        for (int j = 0; j < int(rhs.size()); ++j)
            res[i + j] = (res[i + j] + 1ll * lhs[i] * rhs[j]) % P;
    return res;
}
std::vector<int> operator%(const std::vector<int> &lhs, const std::vector<int> &rhs) {
    auto res = lhs;
    int m = rhs.size() - 1;
    int inv = power(rhs.back(), P - 2);
    for (int i = res.size() - 1; i >= m; --i) {
        int x = 1ll * inv * res[i] % P;
        for (int j = 0; j < m; ++j)
            res[i - m + j] = (res[i - m + j] + 1ll * (P - x) * rhs[j]) % P;
    }
    if (int(res.size()) > m)
        res.resize(m);
    return res;
}
std::vector<int> gauss(std::vector<std::vector<int>> a, std::vector<int> b) {
    int n = a.size();
    for (int i = 0; i < n; ++i) {
        int r = i;
        while (a[r][i] == 0)
            ++r;
        std::swap(a[i], a[r]);
        std::swap(b[i], b[r]);
        int inv = power(a[i][i], P - 2);
        for (int j = i; j < n; ++j)
            a[i][j] = 1ll * a[i][j] * inv % P;
        b[i] = 1ll * b[i] * inv % P;
        for (int j = 0; j < n; ++j) {
            if (i == j)
                continue;
            int x = a[j][i];
            for (int k = i; k < n; ++k)
                a[j][k] = (a[j][k] + 1ll * (P - x) * a[i][k]) % P;
            b[j] = (b[j] + 1ll * (P - x) * b[i]) % P;
        }
    }
    return b;
}
/**   高斯消元法(gaussian elimination)【久远】
 *    2020-12-02: https://www.codechef.com/viewsolution/39942900
**/
std::vector<double> gauss(std::vector<std::vector<double>> a, std::vector<double> b) {
    int n = a.size();
    for (int i = 0; i < n; ++i) {
        double x = a[i][i];
        for (int j = i; j < n; ++j) a[i][j] /= x;
        b[i] /= x;
        for (int j = 0; j < n; ++j) {
            if (i == j) continue;
            x = a[j][i];
            for (int k = i; k < n; ++k) a[j][k] -= a[i][k] * x;
            b[j] -= b[i] * x;
        }
    }
    return b;
}

四、数据结构

点击查看本章节

树状数组

树状数组(Fenwick 新版)

/**   树状数组(Fenwick 新版)
 *    2023-12-28: https://codeforces.com/contest/1915/submission/239262801
**/
template <typename T>
struct Fenwick {
    int n;
    std::vector<T> a;

    Fenwick(int n_ = 0) {
        init(n_);
    }
    
    void init(int n_) {
        n = n_;
        a.assign(n, T{});
    }
    
    void add(int x, const T &v) {
        for (int i = x + 1; i <= n; i += i & -i) {
            a[i - 1] = a[i - 1] + v;
        }
    }
    
    T sum(int x) {
        T ans{};
        for (int i = x; i > 0; i -= i & -i) {
            ans = ans + a[i - 1];
        }
        return ans;
    }
    
    T rangeSum(int l, int r) {
        return sum(r) - sum(l);
    }
    
    int select(const T &k) {
        int x = 0;
        T cur{};
        for (int i = 1 << std::__lg(n); i; i /= 2) {
            if (x + i <= n && cur + a[x + i - 1] <= k) {
                x += i;
                cur = cur + a[x - 1];
            }
        }
        return x;
    }
};

并查集

并查集(DSU)

/**   并查集(DSU)
 *    2023-08-04: https://ac.nowcoder.com/acm/contest/view-submission?submissionId=63239142
**/
struct DSU {
    std::vector<int> f, siz;
    
    DSU() {}
    DSU(int n) {
        init(n);
    }
    
    void init(int n) {
        f.resize(n);
        std::iota(f.begin(), f.end(), 0);
        siz.assign(n, 1);
    }
    
    int find(int x) {
        while (x != f[x]) {
            x = f[x] = f[f[x]];
        }
        return x;
    }
    
    bool same(int x, int y) {
        return find(x) == find(y);
    }
    
    bool merge(int x, int y) {
        x = find(x);
        y = find(y);
        if (x == y) {
            return false;
        }
        siz[x] += siz[y];
        f[y] = x;
        return true;
    }
    
    int size(int x) {
        return siz[find(x)];
    }
};

可撤销并查集(DSU With Rollback)

/**   可撤销并查集(DSU With Rollback)
 *    2024-09-17: https://qoj.ac/submission/569639
**/
struct DSU {
    std::vector<int> siz;
    std::vector<int> f;
    std::vector<std::array<int, 2>> his;
    
    DSU(int n) : siz(n + 1, 1), f(n + 1) {
        std::iota(f.begin(), f.end(), 0);
    }
    
    int find(int x) {
        while (f[x] != x) {
            x = f[x];
        }
        return x;
    }
    
    bool merge(int x, int y) {
        x = find(x);
        y = find(y);
        if (x == y) {
            return false;
        }
        if (siz[x] < siz[y]) {
            std::swap(x, y);
        }
        his.push_back({x, y});
        siz[x] += siz[y];
        f[y] = x;
        return true;
    }
    
    int time() {
        return his.size();
    }
    
    void revert(int tm) {
        while (his.size() > tm) {
            auto [x, y] = his.back();
            his.pop_back();
            f[y] = y;
            siz[x] -= siz[y];
        }
    }
};

线段树

线段树(SegmentTree+Info 区间加+单点修改)

/**   线段树(SegmentTree+Info 初始赋值+单点修改+查找前驱后继)
 *    2023-07-17: https://ac.nowcoder.com/acm/contest/view-submission?submissionId=62804432
 *    2024-06-25: https://codeforces.com/contest/1982/submission/267353839
**/
template<class Info>
struct SegmentTree {
    int n;
    std::vector<Info> info;
    SegmentTree() : n(0) {}
    SegmentTree(int n_, Info v_ = Info()) {
        init(n_, v_);
    }
    template<class T>
    SegmentTree(std::vector<T> init_) {
        init(init_);
    }
    void init(int n_, Info v_ = Info()) {
        init(std::vector(n_, v_));
    }
    template<class T>
    void init(std::vector<T> init_) {
        n = init_.size();
        info.assign(4 << std::__lg(n), Info());
        std::function<void(int, int, int)> build = [&](int p, int l, int r) {
            if (r - l == 1) {
                info[p] = init_[l];
                return;
            }
            int m = (l + r) / 2;
            build(2 * p, l, m);
            build(2 * p + 1, m, r);
            pull(p);
        };
        build(1, 0, n);
    }
    void pull(int p) {
        info[p] = info[2 * p] + info[2 * p + 1];
    }
    void modify(int p, int l, int r, int x, const Info &v) {
        if (r - l == 1) {
            info[p] = v;
            return;
        }
        int m = (l + r) / 2;
        if (x < m) {
            modify(2 * p, l, m, x, v);
        } else {
            modify(2 * p + 1, m, r, x, v);
        }
        pull(p);
    }
    void modify(int p, const Info &v) {
        modify(1, 0, n, p, v);
    }
    Info rangeQuery(int p, int l, int r, int x, int y) {
        if (l >= y || r <= x) {
            return Info();
        }
        if (l >= x && r <= y) {
            return info[p];
        }
        int m = (l + r) / 2;
        return rangeQuery(2 * p, l, m, x, y) + rangeQuery(2 * p + 1, m, r, x, y);
    }
    Info rangeQuery(int l, int r) {
        return rangeQuery(1, 0, n, l, r);
    }
    template<class F>
    int findFirst(int p, int l, int r, int x, int y, F &&pred) {
        if (l >= y || r <= x) {
            return -1;
        }
        if (l >= x && r <= y && !pred(info[p])) {
            return -1;
        }
        if (r - l == 1) {
            return l;
        }
        int m = (l + r) / 2;
        int res = findFirst(2 * p, l, m, x, y, pred);
        if (res == -1) {
            res = findFirst(2 * p + 1, m, r, x, y, pred);
        }
        return res;
    }
    template<class F>
    int findFirst(int l, int r, F &&pred) {
        return findFirst(1, 0, n, l, r, pred);
    }
    template<class F>
    int findLast(int p, int l, int r, int x, int y, F &&pred) {
        if (l >= y || r <= x) {
            return -1;
        }
        if (l >= x && r <= y && !pred(info[p])) {
            return -1;
        }
        if (r - l == 1) {
            return l;
        }
        int m = (l + r) / 2;
        int res = findLast(2 * p + 1, m, r, x, y, pred);
        if (res == -1) {
            res = findLast(2 * p, l, m, x, y, pred);
        }
        return res;
    }
    template<class F>
    int findLast(int l, int r, F &&pred) {
        return findLast(1, 0, n, l, r, pred);
    }
};

懒标记线段树(LazySegmentTree)

/**   懒标记线段树(LazySegmentTree)
 *    2023-03-03: https://atcoder.jp/contests/joi2023yo2/submissions/39363123
 *    2023-03-12: https://codeforces.com/contest/1804/submission/197106837
 *    2023-07-17: https://ac.nowcoder.com/acm/contest/view-submission?submissionId=62804432
 *    2023-11-12: https://qoj.ac/submission/249505
 *    2024-08-14:  https://ac.nowcoder.com/acm/contest/view-submission?submissionId=70980889&returnHomeType=1&uid=329687984
**/
template<class Info, class Tag>
struct LazySegmentTree {
    int n;
    std::vector<Info> info;
    std::vector<Tag> tag;
    LazySegmentTree() : n(0) {}
    LazySegmentTree(int n_, Info v_ = Info()) {
        init(n_, v_);
    }
    template<class T>
    LazySegmentTree(std::vector<T> init_) {
        init(init_);
    }
    void init(int n_, Info v_ = Info()) {
        init(std::vector(n_, v_));
    }
    template<class T>
    void init(std::vector<T> init_) {
        n = init_.size();
        info.assign(4 << std::__lg(n), Info());
        tag.assign(4 << std::__lg(n), Tag());
        std::function<void(int, int, int)> build = [&](int p, int l, int r) {
            if (r - l == 1) {
                info[p] = init_[l];
                return;
            }
            int m = (l + r) / 2;
            build(2 * p, l, m);
            build(2 * p + 1, m, r);
            pull(p);
        };
        build(1, 0, n);
    }
    void pull(int p) {
        info[p] = info[2 * p] + info[2 * p + 1];
    }
    void apply(int p, const Tag &v) {
        info[p].apply(v);
        tag[p].apply(v);
    }
    void push(int p) {
        apply(2 * p, tag[p]);
        apply(2 * p + 1, tag[p]);
        tag[p] = Tag();
    }
    void modify(int p, int l, int r, int x, const Info &v) {
        if (r - l == 1) {
            info[p] = v;
            return;
        }
        int m = (l + r) / 2;
        push(p);
        if (x < m) {
            modify(2 * p, l, m, x, v);
        } else {
            modify(2 * p + 1, m, r, x, v);
        }
        pull(p);
    }
    void modify(int p, const Info &v) {
        modify(1, 0, n, p, v);
    }
    Info rangeQuery(int p, int l, int r, int x, int y) {
        if (l >= y || r <= x) {
            return Info();
        }
        if (l >= x && r <= y) {
            return info[p];
        }
        int m = (l + r) / 2;
        push(p);
        return rangeQuery(2 * p, l, m, x, y) + rangeQuery(2 * p + 1, m, r, x, y);
    }
    Info rangeQuery(int l, int r) {
        return rangeQuery(1, 0, n, l, r);
    }
    void rangeApply(int p, int l, int r, int x, int y, const Tag &v) {
        if (l >= y || r <= x) {
            return;
        }
        if (l >= x && r <= y) {
            apply(p, v);
            return;
        }
        int m = (l + r) / 2;
        push(p);
        rangeApply(2 * p, l, m, x, y, v);
        rangeApply(2 * p + 1, m, r, x, y, v);
        pull(p);
    }
    void rangeApply(int l, int r, const Tag &v) {
        return rangeApply(1, 0, n, l, r, v);
    }
    void half(int p, int l, int r) {
        if (info[p].act == 0) {
            return;
        }
        if ((info[p].min + 1) / 2 == (info[p].max + 1) / 2) {
            apply(p, {-(info[p].min + 1) / 2});
            return;
        }
        int m = (l + r) / 2;
        push(p);
        half(2 * p, l, m);
        half(2 * p + 1, m, r);
        pull(p);
    }
    void half() {
        half(1, 0, n);
    }
    
    template<class F>
    int findFirst(int p, int l, int r, int x, int y, F &&pred) {
        if (l >= y || r <= x) {
            return -1;
        }
        if (l >= x && r <= y && !pred(info[p])) {
            return -1;
        }
        if (r - l == 1) {
            return l;
        }
        int m = (l + r) / 2;
        push(p);
        int res = findFirst(2 * p, l, m, x, y, pred);
        if (res == -1) {
            res = findFirst(2 * p + 1, m, r, x, y, pred);
        }
        return res;
    }
    template<class F>
    int findFirst(int l, int r, F &&pred) {
        return findFirst(1, 0, n, l, r, pred);
    }
    template<class F>
    int findLast(int p, int l, int r, int x, int y, F &&pred) {
        if (l >= y || r <= x) {
            return -1;
        }
        if (l >= x && r <= y && !pred(info[p])) {
            return -1;
        }
        if (r - l == 1) {
            return l;
        }
        int m = (l + r) / 2;
        push(p);
        int res = findLast(2 * p + 1, m, r, x, y, pred);
        if (res == -1) {
            res = findLast(2 * p, l, m, x, y, pred);
        }
        return res;
    }
    template<class F>
    int findLast(int l, int r, F &&pred) {
        return findLast(1, 0, n, l, r, pred);
    }
    
    void maintainL(int p, int l, int r, int pre) {
        if (info[p].difl > 0 && info[p].maxlowl < pre) {
            return;
        }
        if (r - l == 1) {
            info[p].max = info[p].maxlowl;
            info[p].maxl = info[p].maxr = l;
            info[p].maxlowl = info[p].maxlowr = -inf;
            return;
        }
        int m = (l + r) / 2;
        push(p);
        maintainL(2 * p, l, m, pre);
        pre = std::max(pre, info[2 * p].max);
        maintainL(2 * p + 1, m, r, pre);
        pull(p);
    }
    void maintainL() {
        maintainL(1, 0, n, -1);
    }
    void maintainR(int p, int l, int r, int suf) {
        if (info[p].difr > 0 && info[p].maxlowr < suf) {
            return;
        }
        if (r - l == 1) {
            info[p].max = info[p].maxlowl;
            info[p].maxl = info[p].maxr = l;
            info[p].maxlowl = info[p].maxlowr = -inf;
            return;
        }
        int m = (l + r) / 2;
        push(p);
        maintainR(2 * p + 1, m, r, suf);
        suf = std::max(suf, info[2 * p + 1].max);
        maintainR(2 * p, l, m, suf);
        pull(p);
    }
    void maintainR() {
        maintainR(1, 0, n, -1);
    }
};

struct Tag {
    int x = 0;
    void apply(const Tag &t) & {
        x = std::max(x, t.x);
    }
};

struct Info {
    int x = 0;
    void apply(const Tag &t) & {
        x = std::max(x, t.x);
    }
};

Info operator+(const Info &a, const Info &b) {
    return {std::max(a.x, b.x)};
}

动态取模类(ModIntBase)

template<class T>
constexpr T power(T a, u64 b, T res = 1) {
    for (; b != 0; b /= 2, a *= a) {
        if (b & 1) {
            res *= a;
        }
    }
    return res;
}
 
template<u32 P>
constexpr u32 mulMod(u32 a, u32 b) {
    return u64(a) * b % P;
}
 
template<u64 P>
constexpr u64 mulMod(u64 a, u64 b) {
    u64 res = a * b - u64(1.L * a * b / P - 0.5L) * P;
    res %= P;
    return res;
}
 
constexpr i64 safeMod(i64 x, i64 m) {
    x %= m;
    if (x < 0) {
        x += m;
    }
    return x;
}
 
constexpr std::pair<i64, i64> invGcd(i64 a, i64 b) {
    a = safeMod(a, b);
    if (a == 0) {
        return {b, 0};
    }
    
    i64 s = b, t = a;
    i64 m0 = 0, m1 = 1;
 
    while (t) {
        i64 u = s / t;
        s -= t * u;
        m0 -= m1 * u;
        
        std::swap(s, t);
        std::swap(m0, m1);
    }
    
    if (m0 < 0) {
        m0 += b / s;
    }
    
    return {s, m0};
}
 
template<std::unsigned_integral U, U P>
struct ModIntBase {
public:
    constexpr ModIntBase() : x(0) {}
    template<std::unsigned_integral T>
    constexpr ModIntBase(T x_) : x(x_ % mod()) {}
    template<std::signed_integral T>
    constexpr ModIntBase(T x_) {
        using S = std::make_signed_t<U>;
        S v = x_ % S(mod());
        if (v < 0) {
            v += mod();
        }
        x = v;
    }
    
    constexpr static U mod() {
        return P;
    }
    
    constexpr U val() const {
        return x;
    }
    
    constexpr ModIntBase operator-() const {
        ModIntBase res;
        res.x = (x == 0 ? 0 : mod() - x);
        return res;
    }
    
    constexpr ModIntBase inv() const {
        return power(*this, mod() - 2);
    }
    
    constexpr ModIntBase &operator*=(const ModIntBase &rhs) & {
        x = mulMod<mod()>(x, rhs.val());
        return *this;
    }
    constexpr ModIntBase &operator+=(const ModIntBase &rhs) & {
        x += rhs.val();
        if (x >= mod()) {
            x -= mod();
        }
        return *this;
    }
    constexpr ModIntBase &operator-=(const ModIntBase &rhs) & {
        x -= rhs.val();
        if (x >= mod()) {
            x += mod();
        }
        return *this;
    }
    constexpr ModIntBase &operator/=(const ModIntBase &rhs) & {
        return *this *= rhs.inv();
    }
    
    friend constexpr ModIntBase operator*(ModIntBase lhs, const ModIntBase &rhs) {
        lhs *= rhs;
        return lhs;
    }
    friend constexpr ModIntBase operator+(ModIntBase lhs, const ModIntBase &rhs) {
        lhs += rhs;
        return lhs;
    }
    friend constexpr ModIntBase operator-(ModIntBase lhs, const ModIntBase &rhs) {
        lhs -= rhs;
        return lhs;
    }
    friend constexpr ModIntBase operator/(ModIntBase lhs, const ModIntBase &rhs) {
        lhs /= rhs;
        return lhs;
    }
    
    friend constexpr std::istream &operator>>(std::istream &is, ModIntBase &a) {
        i64 i;
        is >> i;
        a = i;
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const ModIntBase &a) {
        return os << a.val();
    }
    
    friend constexpr bool operator==(const ModIntBase &lhs, const ModIntBase &rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr std::strong_ordering operator<=>(const ModIntBase &lhs, const ModIntBase &rhs) {
        return lhs.val() <=> rhs.val();
    }
    
private:
    U x;
};
 
template<u32 P>
using ModInt = ModIntBase<u32, P>;
template<u64 P>
using ModInt64 = ModIntBase<u64, P>;
 
struct Barrett {
public:
    Barrett(u32 m_) : m(m_), im((u64)(-1) / m_ + 1) {}
 
    constexpr u32 mod() const {
        return m;
    }
 
    constexpr u32 mul(u32 a, u32 b) const {
        u64 z = a;
        z *= b;
        
        u64 x = u64((u128(z) * im) >> 64);
        
        u32 v = u32(z - x * m);
        if (m <= v) {
            v += m;
        }
        return v;
    }
 
private:
    u32 m;
    u64 im;
};
 
template<u32 Id>
struct DynModInt {
public:
    constexpr DynModInt() : x(0) {}
    template<std::unsigned_integral T>
    constexpr DynModInt(T x_) : x(x_ % mod()) {}
    template<std::signed_integral T>
    constexpr DynModInt(T x_) {
        int v = x_ % int(mod());
        if (v < 0) {
            v += mod();
        }
        x = v;
    }
    
    constexpr static void setMod(u32 m) {
        bt = m;
    }
    
    static u32 mod() {
        return bt.mod();
    }
    
    constexpr u32 val() const {
        return x;
    }
    
    constexpr DynModInt operator-() const {
        DynModInt res;
        res.x = (x == 0 ? 0 : mod() - x);
        return res;
    }
    
    constexpr DynModInt inv() const {
        auto v = invGcd(x, mod());
        assert(v.first == 1);
        return v.second;
    }
    
    constexpr DynModInt &operator*=(const DynModInt &rhs) & {
        x = bt.mul(x, rhs.val());
        return *this;
    }
    constexpr DynModInt &operator+=(const DynModInt &rhs) & {
        x += rhs.val();
        if (x >= mod()) {
            x -= mod();
        }
        return *this;
    }
    constexpr DynModInt &operator-=(const DynModInt &rhs) & {
        x -= rhs.val();
        if (x >= mod()) {
            x += mod();
        }
        return *this;
    }
    constexpr DynModInt &operator/=(const DynModInt &rhs) & {
        return *this *= rhs.inv();
    }
    
    friend constexpr DynModInt operator*(DynModInt lhs, const DynModInt &rhs) {
        lhs *= rhs;
        return lhs;
    }
    friend constexpr DynModInt operator+(DynModInt lhs, const DynModInt &rhs) {
        lhs += rhs;
        return lhs;
    }
    friend constexpr DynModInt operator-(DynModInt lhs, const DynModInt &rhs) {
        lhs -= rhs;
        return lhs;
    }
    friend constexpr DynModInt operator/(DynModInt lhs, const DynModInt &rhs) {
        lhs /= rhs;
        return lhs;
    }
    
    friend constexpr std::istream &operator>>(std::istream &is, DynModInt &a) {
        i64 i;
        is >> i;
        a = i;
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const DynModInt &a) {
        return os << a.val();
    }
    
    friend constexpr bool operator==(const DynModInt &lhs, const DynModInt &rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr std::strong_ordering operator<=>(const DynModInt &lhs, const DynModInt &rhs) {
        return lhs.val() <=> rhs.val();
    }
    
private:
    u32 x;
    static Barrett bt;
};
 
template<u32 Id>
Barrett DynModInt<Id>::bt = 998244353;

using Z = ModInt<998244353>;

状压RMQ(RMQ)

/**   状压RMQ(RMQ)
 *    2023-03-02: https://atcoder.jp/contests/joi2022ho/submissions/39351739
 *    2023-09-04: https://qoj.ac/submission/163598
 *    2024-08-07: https://atcoder.jp/contests/abc365/submissions/56438692
**/
template<class T,
    class Cmp = std::less<T>>
struct RMQ {
    const Cmp cmp = Cmp();
    static constexpr unsigned B = 64;
    using u64 = unsigned long long;
    int n;
    std::vector<std::vector<T>> a;
    std::vector<T> pre, suf, ini;
    std::vector<u64> stk;
    RMQ() {}
    RMQ(const std::vector<T> &v) {
        init(v);
    }
    void init(const std::vector<T> &v) {
        n = v.size();
        pre = suf = ini = v;
        stk.resize(n);
        if (!n) {
            return;
        }
        const int M = (n - 1) / B + 1;
        const int lg = std::__lg(M);
        a.assign(lg + 1, std::vector<T>(M));
        for (int i = 0; i < M; i++) {
            a[0][i] = v[i * B];
            for (int j = 1; j < B && i * B + j < n; j++) {
                a[0][i] = std::min(a[0][i], v[i * B + j], cmp);
            }
        }
        for (int i = 1; i < n; i++) {
            if (i % B) {
                pre[i] = std::min(pre[i], pre[i - 1], cmp);
            }
        }
        for (int i = n - 2; i >= 0; i--) {
            if (i % B != B - 1) {
                suf[i] = std::min(suf[i], suf[i + 1], cmp);
            }
        }
        for (int j = 0; j < lg; j++) {
            for (int i = 0; i + (2 << j) <= M; i++) {
                a[j + 1][i] = std::min(a[j][i], a[j][i + (1 << j)], cmp);
            }
        }
        for (int i = 0; i < M; i++) {
            const int l = i * B;
            const int r = std::min(1U * n, l + B);
            u64 s = 0;
            for (int j = l; j < r; j++) {
                while (s && cmp(v[j], v[std::__lg(s) + l])) {
                    s ^= 1ULL << std::__lg(s);
                }
                s |= 1ULL << (j - l);
                stk[j] = s;
            }
        }
    } 
    T operator()(int l, int r) {
        if (l / B != (r - 1) / B) {
            T ans = std::min(suf[l], pre[r - 1], cmp);
            l = l / B + 1;
            r = r / B;
            if (l < r) {
                int k = std::__lg(r - l);
                ans = std::min({ans, a[k][l], a[k][r - (1 << k)]}, cmp);
            }
            return ans;
        } else {
            int x = B * (l / B);
            return ini[__builtin_ctzll(stk[r - 1] >> (l - x)) + l];
        }
    }
};

Splay

Treap

LCT

分数四则运算(Frac)

/**   分数四则运算(Frac)
 *    2024-07-30: https://qoj.ac/submission/498911
**/
template<class T>
struct Frac {
    T num;
    T den;
    Frac(T num_, T den_) : num(num_), den(den_) {
        if (den < 0) {
            den = -den;
            num = -num;
        }
    }
    Frac() : Frac(0, 1) {}
    Frac(T num_) : Frac(num_, 1) {}
    explicit operator double() const {
        return 1. * num / den;
    }
    Frac &operator+=(const Frac &rhs) {
        num = num * rhs.den + rhs.num * den;
        den *= rhs.den;
        return *this;
    }
    Frac &operator-=(const Frac &rhs) {
        num = num * rhs.den - rhs.num * den;
        den *= rhs.den;
        return *this;
    }
    Frac &operator*=(const Frac &rhs) {
        num *= rhs.num;
        den *= rhs.den;
        return *this;
    }
    Frac &operator/=(const Frac &rhs) {
        num *= rhs.den;
        den *= rhs.num;
        if (den < 0) {
            num = -num;
            den = -den;
        }
        return *this;
    }
    friend Frac operator+(Frac lhs, const Frac &rhs) {
        return lhs += rhs;
    }
    friend Frac operator-(Frac lhs, const Frac &rhs) {
        return lhs -= rhs;
    }
    friend Frac operator*(Frac lhs, const Frac &rhs) {
        return lhs *= rhs;
    }
    friend Frac operator/(Frac lhs, const Frac &rhs) {
        return lhs /= rhs;
    }
    friend Frac operator-(const Frac &a) {
        return Frac(-a.num, a.den);
    }
    friend bool operator==(const Frac &lhs, const Frac &rhs) {
        return lhs.num * rhs.den == rhs.num * lhs.den;
    }
    friend bool operator!=(const Frac &lhs, const Frac &rhs) {
        return lhs.num * rhs.den != rhs.num * lhs.den;
    }
    friend bool operator<(const Frac &lhs, const Frac &rhs) {
        return lhs.num * rhs.den < rhs.num * lhs.den;
    }
    friend bool operator>(const Frac &lhs, const Frac &rhs) {
        return lhs.num * rhs.den > rhs.num * lhs.den;
    }
    friend bool operator<=(const Frac &lhs, const Frac &rhs) {
        return lhs.num * rhs.den <= rhs.num * lhs.den;
    }
    friend bool operator>=(const Frac &lhs, const Frac &rhs) {
        return lhs.num * rhs.den >= rhs.num * lhs.den;
    }
    friend std::ostream &operator<<(std::ostream &os, Frac x) {
        T g = std::gcd(x.num, x.den);
        if (x.den == g) {
            return os << x.num / g;
        } else {
            return os << x.num / g << "/" << x.den / g;
        }
    }
};

线性基(Basis)

/**   线性基(Basis)
 *    2023-12-03: https://codeforces.com/contest/1902/submission/235594491
**/
struct Basis {
    int a[20] {};
    int t[20] {};
    
    Basis() {
        std::fill(t, t + 20, -1);
    }
    
    void add(int x, int y = 1E9) {
        for (int i = 0; i < 20; i++) {
            if (x >> i & 1) {
                if (y > t[i]) {
                    std::swap(a[i], x);
                    std::swap(t[i], y);
                }
                x ^= a[i];
            }
        }
    }
    
    bool query(int x, int y = 0) {
        for (int i = 0; i < 20; i++) {
            if ((x >> i & 1) && t[i] >= y) {
                x ^= a[i];
            }
        }
        return x == 0;
    }
};

高精度(BigInt)

/**   高精度(BigInt)
 *    2023-09-11: https://qoj.ac/submission/176420
**/
constexpr int N = 1000;

struct BigInt {
    int a[N];
    BigInt(int x = 0) : a{} {
        for (int i = 0; x; i++) {
            a[i] = x % 10;
            x /= 10;
        }
    }
    BigInt &operator*=(int x) {
        for (int i = 0; i < N; i++) {
            a[i] *= x;
        }
        for (int i = 0; i < N - 1; i++) {
            a[i + 1] += a[i] / 10;
            a[i] %= 10;
        }
        return *this;
    }
    BigInt &operator/=(int x) {
        for (int i = N - 1; i >= 0; i--) {
            if (i) {
                a[i - 1] += a[i] % x * 10;
            }
            a[i] /= x;
        }
        return *this;
    }
    BigInt &operator+=(const BigInt &x) {
        for (int i = 0; i < N; i++) {
            a[i] += x.a[i];
            if (a[i] >= 10) {
                a[i + 1] += 1;
                a[i] -= 10;
            }
        }
        return *this;
    }
};

std::ostream &operator<<(std::ostream &o, const BigInt &a) {
    int t = N - 1;
    while (a.a[t] == 0) {
        t--;
    }
    for (int i = t; i >= 0; i--) {
        o << a.a[i];
    }
    return o;
}

五、字符串

点击查看本章节

马拉车(Manacher)

/**   马拉车(Manacher, with string)
 *    2024-04-06: https://qoj.ac/submission/380047
 *    2024-04-09: https://qoj.ac/submission/384389 【模板】
**/
std::vector<int> manacher(std::string s) {
    std::string t = "#";
    for (auto c : s) {
        t += c;
        t += '#';
    }
    int n = t.size();
    std::vector<int> r(n);
    for (int i = 0, j = 0; i < n; i++) {
        if (2 * j - i >= 0 && j + r[j] > i) {
            r[i] = std::min(r[2 * j - i], j + r[j] - i);
        }
        while (i - r[i] >= 0 && i + r[i] < n && t[i - r[i]] == t[i + r[i]]) {
            r[i] += 1;
        }
        if (i + r[i] > j + r[j]) {
            j = i;
        }
    }
    return r;
}

Z 函数

/**   Z函数
 *    2023-08-11: https://ac.nowcoder.com/acm/contest/view-submission?submissionId=63378373
 *    2024-04-09: https://qoj.ac/submission/384405 【模板】
**/
std::vector<int> Z(std::string s) {
    int n = s.size();
    std::vector<int> z(n + 1);
    z[0] = n;
    for (int i = 1, j = 1; i < n; i++) {
        z[i] = std::max(0, std::min(j + z[j] - i, z[i - j]));
        while (i + z[i] < n && s[z[i]] == s[i + z[i]]) {
            z[i]++;
        }
        if (i + z[i] > j + z[j]) {
            j = i;
        }
    }
    return z;
}

后缀数组

/**   后缀数组(SuffixArray 旧版)
 *    2023-03-14: https://atcoder.jp/contests/discovery2016-qual/submissions/39727257
 *    2023-09-05: https://qoj.ac/submission/164483
 *    2024-04-09: https://qoj.ac/submission/384415 【模板】
**/
struct SuffixArray {
    int n;
    std::vector<int> sa, rk, lc;
    SuffixArray(const std::string &s) {
        n = s.length();
        sa.resize(n);
        lc.resize(n - 1);
        rk.resize(n);
        std::iota(sa.begin(), sa.end(), 0);
        std::sort(sa.begin(), sa.end(), [&](int a, int b) {return s[a] < s[b];});
        rk[sa[0]] = 0;
        for (int i = 1; i < n; ++i)
            rk[sa[i]] = rk[sa[i - 1]] + (s[sa[i]] != s[sa[i - 1]]);
        int k = 1;
        std::vector<int> tmp, cnt(n);
        tmp.reserve(n);
        while (rk[sa[n - 1]] < n - 1) {
            tmp.clear();
            for (int i = 0; i < k; ++i)
                tmp.push_back(n - k + i);
            for (auto i : sa)
                if (i >= k)
                    tmp.push_back(i - k);
            std::fill(cnt.begin(), cnt.end(), 0);
            for (int i = 0; i < n; ++i)
                ++cnt[rk[i]];
            for (int i = 1; i < n; ++i)
                cnt[i] += cnt[i - 1];
            for (int i = n - 1; i >= 0; --i)
                sa[--cnt[rk[tmp[i]]]] = tmp[i];
            std::swap(rk, tmp);
            rk[sa[0]] = 0;
            for (int i = 1; i < n; ++i)
                rk[sa[i]] = rk[sa[i - 1]] + (tmp[sa[i - 1]] < tmp[sa[i]] || sa[i - 1] + k == n || tmp[sa[i - 1] + k] < tmp[sa[i] + k]);
            k *= 2;
        }
        for (int i = 0, j = 0; i < n; ++i) {
            if (rk[i] == 0) {
                j = 0;
            } else {
                for (j -= j > 0; i + j < n && sa[rk[i] - 1] + j < n && s[i + j] == s[sa[rk[i] - 1] + j]; )
                    ++j;
                lc[rk[i] - 1] = j;
            }
        }
    }
};

后缀自动机(SAM 新版)

/**   后缀自动机(SAM 新版)
 *    2023-05-27: https://cf.dianhsu.com/gym/104353/submission/207318083
 *    2023-09-25: https://qoj.ac/submission/188106
 *    2024-04-09: https://qoj.ac/submission/384423 【模板】
 *    2024-04-09: https://qoj.ac/submission/384429 【模板】
**/
struct SAM {
    static constexpr int ALPHABET_SIZE = 26;
    struct Node {
        int len;
        int link;
        std::array<int, ALPHABET_SIZE> next;
        Node() : len{}, link{}, next{} {}
    };
    std::vector<Node> t;
    SAM() {
        init();
    }
    void init() {
        t.assign(2, Node());
        t[0].next.fill(1);
        t[0].len = -1;
    }
    int newNode() {
        t.emplace_back();
        return t.size() - 1;
    }
    int extend(int p, int c) {
        if (t[p].next[c]) {
            int q = t[p].next[c];
            if (t[q].len == t[p].len + 1) {
                return q;
            }
            int r = newNode();
            t[r].len = t[p].len + 1;
            t[r].link = t[q].link;
            t[r].next = t[q].next;
            t[q].link = r;
            while (t[p].next[c] == q) {
                t[p].next[c] = r;
                p = t[p].link;
            }
            return r;
        }
        int cur = newNode();
        t[cur].len = t[p].len + 1;
        while (!t[p].next[c]) {
            t[p].next[c] = cur;
            p = t[p].link;
        }
        t[cur].link = extend(p, c);
        return cur;
    }
    int extend(int p, char c, char offset = 'a') {
        return extend(p, c - offset);
    }
    
    int next(int p, int x) {
        return t[p].next[x];
    }
    
    int next(int p, char c, char offset = 'a') {
        return next(p, c - 'a');
    }
    
    int link(int p) {
        return t[p].link;
    }
    
    int len(int p) {
        return t[p].len;
    }
    
    int size() {
        return t.size();
    }
};

KMP

/**   前缀函数(KMP)
 *    2023-11-17: https://qoj.ac/submission/253754
 *    2024-04-09: https://qoj.ac/submission/384408 【模板】
**/
std::vector<int> kmp(std::string s) {
    int n = s.size();
    std::vector<int> f(n + 1);
    for (int i = 1, j = 0; i < n; i++) {
        while (j && s[i] != s[j]) {
            j = f[j];
        }
        j += (s[i] == s[j]);
        f[i + 1] = j;
    }
    return f;
}
posted @ 2025-10-18 16:21  filt  阅读(13)  评论(0)    收藏  举报
返回顶部 返回底部