Curator典型应用场景之-分布式计数器

之前我们了解了基于Corator的分布式锁之后,我们就很容易基于其实现一个分布式计数器,顾名思义,计数器是用来计数的, 利用ZooKeeper可以实现一个集群共享的计数器。 只要使用相同的path就可以得到最新的计数器值, 这是由ZooKeeper的一致性保证的。Curator有两种计数器。

SharedCount
这个类使用int类型来计数。 主要涉及三个类。

SharedCount
SharedCountReader
SharedCountListener

SharedCount代表计数器, 可以为它增加一个SharedCountListener,当计数器改变时此Listener可以监听到改变的事件,而SharedCountReader可以读取到最新的值, 包括字面值和带版本信息的值VersionedValue。SharedCount必须调用start()方法开启,使用完之后必须调用close关闭它。

SharedCount有以下几个主要方法

/** 强制设置值 */
public void setCount(int newCount) throws Exception;
 /** 第一个参数提供当前的VersionedValue,如果期间其它client更新了此计数值, 
 * 你的更新可能不成功 更新不成功返回false 但可以通过getCount()读取最新值*/
public boolean  trySetCount(VersionedValue<Integer> previous, int newCount) throws Exception;
/** 获取当前最新值 */
public int getCount();

例子

import org.apache.curator.framework.CuratorFramework;
import org.apache.curator.framework.CuratorFrameworkFactory;
import org.apache.curator.framework.recipes.shared.SharedCount;
import org.apache.curator.framework.recipes.shared.SharedCountListener;
import org.apache.curator.framework.recipes.shared.SharedCountReader;
import org.apache.curator.framework.state.ConnectionState;
import org.apache.curator.retry.ExponentialBackoffRetry;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class SharedCountCase {
    public static void main(String[] args) throws Exception {
        final int clientNum = 5;
        final String BASE_PATH = "/felixzh/counter";

        CuratorFramework cfClient = CuratorFrameworkFactory.builder().connectString("felixzh:2181")
                .retryPolicy(new ExponentialBackoffRetry(1000, 3)).build();
        cfClient.start();


        ExecutorService executorService = Executors.newFixedThreadPool(clientNum);
        for (int i = 0; i < clientNum; i++) {


            executorService.submit(() -> {
                try {
                    SharedCount sharedCount = new SharedCount(cfClient, BASE_PATH, 0);
                    sharedCount.addListener(new SharedCountListener() {
                        @Override
                        public void countHasChanged(SharedCountReader sharedCount, int newCount) throws Exception {
                            //每个线程都能监听到变化
                            System.out.println(sharedCount.getVersionedValue().getValue() + "," + newCount);
                        }

                        @Override
                        public void stateChanged(CuratorFramework client, ConnectionState newState) {

                        }
                    });
                    sharedCount.start();
                    boolean res = false;

                    while (!res) {
                        res = sharedCount.trySetCount(sharedCount.getVersionedValue(), sharedCount.getVersionedValue().getValue() + 1);
                    }

                    System.out.println("current value: " + sharedCount.getVersionedValue().getValue());
                } catch (Exception e) {
                    e.printStackTrace();
                }
            });
        }

        Thread.sleep(3_000);
        executorService.shutdown();
    }
}

程序运行,输出以下结果:

current value: 91
current value: 92
current value: 93
current value: 94
current value: 95

DistributedAtomicInteger 和 DistributedAtomicLong

DistributedAtomicInteger和SharedCount计数范围是一样的,都是int类型,但是DistributedAtomicInteger和DistributedAtomicLong和上面的计数器的实现有显著的不同,它首先尝试使用乐观锁的方式设置计数器, 如果不成功(比如期间计数器已经被其它client更新了), 它使用InterProcessMutex方式来更新计数值。 还记得InterProcessMutex是什么吗? 它是我们前面讲的分布式可重入锁。下面只讲解DistributedAtomicLong。
可以从它的内部实现DistributedAtomicValue.trySet中看出端倪。

此计数器有一系列的操作:
get(): 获取当前值
increment(): 加一
decrement(): 减一
add(): 增加特定的值
subtract(): 减去特定的值
trySet(): 尝试设置计数值
forceSet(): 强制设置计数值
你必须检查返回结果的succeeded(), 它代表此操作是否成功。 如果操作成功, preValue()代表操作前的值, postValue()代表操作后的值。

例子

import org.apache.curator.framework.CuratorFramework;
import org.apache.curator.framework.CuratorFrameworkFactory;
import org.apache.curator.framework.recipes.atomic.AtomicValue;
import org.apache.curator.framework.recipes.atomic.DistributedAtomicLong;
import org.apache.curator.retry.ExponentialBackoffRetry;
import org.apache.curator.retry.RetryNTimes;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.atomic.AtomicLong;

public class DistributedAtomicLongCase {
    public static void main(String[] args) throws Exception {
        CuratorFramework cfClient = CuratorFrameworkFactory.builder().connectString("felixzh:2181")
                .retryPolicy(new ExponentialBackoffRetry(100, 3)).build();
        cfClient.start();

        final int clientNum = 5;
        final String BASE_PATH = "/felixzh_distributed_count";

        ExecutorService executorService = Executors.newFixedThreadPool(clientNum);
        for (int i = 0; i < clientNum; i++) {

            executorService.submit(() -> {
                try {
                    final DistributedAtomicLong distributedAtomicLong = new DistributedAtomicLong(cfClient, BASE_PATH, new RetryNTimes(3, 1000));
                    AtomicValue<Long> atomicValue = distributedAtomicLong.increment();
                    if (atomicValue.succeeded()) {
                        System.out.println("pre value: " + atomicValue.preValue() + "," + "post value: " + atomicValue.postValue());
                        System.out.println("current value: " + distributedAtomicLong.get().postValue());
                    }
                } catch (Exception e) {
                    e.printStackTrace();
                }
            });
        }

        Thread.sleep(3_000);
        executorService.shutdown();
    }
}

程序运行,输出以下结果:

pre value: 55,post value: 56
current value: 56
pre value: 56,post value: 57
current value: 57
pre value: 57,post value: 58
current value: 58
pre value: 58,post value: 59
current value: 59
pre value: 59,post value: 60
current value: 60

 

posted @ 2021-12-16 11:30  大数据从业者FelixZh  阅读(494)  评论(0)    收藏  举报
大数据从业者