Mysql索引
参考:B站编程不良人:https://www.bilibili.com/video/BV19y4y127h4?from=search&seid=13391022342806000725
美团技术团队:https://tech.meituan.com/2014/06/30/mysql-index.html
刘召考博客:http://www.liuzk.com/410.html
一、什么是索引?
官方定义:索引是一种帮助mysql提高查询效率的数据结构
索引原理:
除了词典,生活中随处可见索引的例子,如火车站的车次表、图书的目录等。它们的原理都是一样的,通过不断的缩小想要获得数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是我们总是通过同一种查找方式来锁定数据。
数据库也是一样,但显然要复杂许多,因为不仅面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。数据库应该选择怎么样的方式来应对所有的问题呢?我们回想字典的例子,能不能把数据分成段,然后分段查询呢?最简单的如果1000条数据,1到100分成第一段,101到200分成第二段,201到300分成第三段……这样查第250条数据,只要找第三段就可以了,一下子去除了90%的无效数据。但如果是1千万的记录呢,分成几段比较好?稍有算法基础的同学会想到搜索树,其平均复杂度是lgN,具有不错的查询性能。但这里我们忽略了一个关键的问题,复杂度模型是基于每次相同的操作成本来考虑的,数据库实现比较复杂,数据保存在磁盘上,而为了提高性能,每次又可以把部分数据读入内存来计算,因为我们知道访问磁盘的成本大概是访问内存的十万倍左右,所以简单的搜索树难以满足复杂的应用场景。
索引的优点: 大大的加快查询速度
索引的缺点:
- 维护索引需要耗费数据库资源
- 索引需要占用磁盘空间
- 对表进行增删改时,数据库本身会增加一个对索引维护的步骤,所以速度会受到影响。
二、索引的分类
主键索引
设定为主键后数据库会自动建立索引,INNODB为聚簇索引。
单值索引
即一个索引包含单个列,一个表可以有多个单列索引。
唯一索引
索引列的值必须为一,但允许有空值,且空值只能有一个。
复合索引
即一个索引有多个列。
Full Text (全文索引)
MySQL5.7版本之前只在MYISAM引擎上支持。定义索引的列上支持值的全文查找,允许在这些列中插入重复值和空值。全文索引可以在Char Varchar、Text类型的列上创建。
三、索引的基本操作
3.1 主键索引
创建表时创建
--建表 主键自动创建主键索引
create table t_user(id varchar(20) primary key,name varchar(20));
--查看索引
show index from t_user;
3.2 单列索引(普通索引、单值索引)
--建表时创建
create table t_user(id varchar(20) primary key,name varchar(20),key(name));
'注意:随表一起建立的索引索引名同列名一致'
--建表后创建
create index nameindex on t_user(name);
--删除索引
drop index 索引名 on 表名
3.3 唯一索引
--建表时创建
create table t_user(id varchar(20) primary key,name varchar(20),unique(name));
--建表后创建
create unique index nameindex on t_user(name);
3.4 复合索引
---建表时创建
create table t_user(id varchar(20) primary key,name varchar(20),age int,key(name,age));
--建表后创建
create index nameageindex on t_user(name,age);
3.5、最左前缀原则
MySQL中的索引可以以一定顺序引用多列,这种索引叫作联合索引。如User表的name和city加联合索引就是(name,city),而最左前缀原则指的是,如果查询的时候查询条件精确匹配索引的左边连续一列或几列,则此列就可以被用到
create table t_user(id varchar(20) primary key,name varchar(20),age int,key(name,age,sex));
mysql在进行联合索引的时候遵循两个原则:
1、最左前缀原则 2、查询时,mysql底层会动态排序条件顺序方便查询。
如开头的语句中存在复合索引 name,age,sex
当条件为 时,是否可用索引(命中索引)?
name,age,sex 可以,与索引一致
name,sex,age 可以,查询时mysql会动态排序为基于(name,age,sex)排序
age,sex 不可以,基于最左前缀原则,条件没有name。
sex,age,name 可以,查询时mysql会动态排序
name,age 可以
四、索引的底层原理
---建表
create table t_emp(id int primary key,name varchar(20),age int);
--插入数据
insert into t_emp values(5,'d',22);
insert into t_emp values(6,'d',22);
insert into t_emp values(7,'e',21);
insert into t_emp values(1,'a',23);
insert into t_emp values(2,'b',26);
insert into t_emp values(3,'c',27);
insert into t_emp values(4,'a',32);
insert into t_emp values(8,'f',53);
insert into t_emp values(9,'v',13);
--查询
select * from t_emp;

疑问:插入时候主键是无序的,但为什么是查询出来是有序的?
答:mysql底层为主键自动创建索引,创建索引会进行排序,mysql底层真正存储是这样的。
疑问:为什么要排序呢?
答:因为排序之后查询相对变快了,如查询id=3,我只需要从头比较三次,就能找到了,如果无序,运气好的话,第一次比较就能查到id=3,也可能要比较999次才找到id=3,但是我们能有多少次好运气能每次能很快找到想要的值
疑问:是否还能再优化?
没有什么事是不能加多一层解决不了的,如果有,就再加一层。
对于上面的方案后mysql又再次基于页的形式对索引进行管理,每一页的存储空间为16kb。如下图,最底层存储的是主键+值+指针的信息,在上面再添加一层页目录,里面存放的是主键和指针。
这么做的好处:1、每一个页能存储的空间为16kb,而页目录不存储值信息,能承载更多的记录。
2、查询速度更快,每次查询也去页目录去查找定位目标在哪一页,再去页里面查找。举个栗子:假设每一个页存储的是100行数据,查找位于第七页的id=667的行数据,传统是对比667次找到该行,基于分页方式下是先去页目录查找,发现它在id=600和id=700之间,找到它在第七页,再去第七页里比对67次,找到该行数据。

这种索引结构也被称为B树,从结构图中可以看到每个节点中不仅包含数据的key值,还有data值。而每一个页的存储空间是有限的,如果data数据较大时将会导致每个节点(即一个页)能存储的key的数量很小,当存储的数据量很大时同样会导致B-Tree的深度较大,增大查询时的磁盘I/O次数,进而影响查询效率。
五、B+树
B+Tree是在B-Tree基础上的一种优化,使其更适合实现外存储索引结构,InnoDB存储引擎就是用B+Tree实现其索引结构。在B+Tree中,所有数据记录节点都是按照键值大小顺序存放在同一层的叶子节点上,而非叶子节点上只存储key值信息,这样可以大大加大每个节点存储的key值数量,降低B+Tree的高度。

B+Tree相对于B-Tree有几点不同:
非叶子节点只存储键值信息,B树的非叶子节点也存储data信息。
之所以这么做是因为在数据库中页的大小是固定的,InnoDB 中页的默认大小是 16KB。
如果不存储数据,那么就会存储更多的键值,相应的树的阶数(节点的子节点树)就会更大,树就会更矮更胖,如此一来我们查找数据进行磁盘的 IO 次数又会再次减少,数据查询的效率也会更快。
另外,B+ 树的阶数是等于键值的数量的,如果我们的 B+ 树一个节点可以存储 1000 个键值,那么 3 层 B+ 树可以存储 1000×1000×1000=10 亿个数据。
目前的三层索引结构已经满足大部分项目需求了,加上一般根节点是常驻内存的,所以一般我们查找 10 亿数据,只需要 2 次磁盘 IO。
所有叶子节点之间都有一个链指针。
数据记录都存放在叶子节点中。
六、聚簇索引和非聚簇索引
6.1 定义与区别
-
聚簇索引: 以 InnoDB 作为存储引擎的表,表中的数据都会有一个主键,即使你不创建主键,系统也会帮你创建一个隐式的主键。
这是因为 InnoDB 是把数据存放在 B+ 树中的,而 B+ 树的键值就是主键,在 B+ 树的叶子节点中,存储了表中所有的数据。
这种以主键作为 B+ 树索引的键值而构建的 B+ 树索引,我们称之为聚集索引。
-
非聚簇索引:以主键以外的列值作为键值构建的 B+ 树索引,我们称之为非聚集索引。
-
非聚集索引与聚集索引的区别:在于非聚集索引的叶子节点不存储表中的数据,而是存储该列对应的主键,想要查找数据我们还需要根据主键再去聚集索引中进行查找,这个再根据聚集索引查找数据的过程,我们称为回表。
明白了聚集索引和非聚集索引的定义,我们应该明白这样一句话:数据即索引,索引即数据。
6.2 利用聚集索引查找数据

现在假设我们要查找 id>=18 并且 id<40 的用户数据。对应的 sql 语句为:
select * from user where id>=18 and id <40
其中 id 为主键,具体的查找过程如下:
- 一般根节点都是常驻内存的,也就是说页 1 (根目录)已经在内存中了,此时不需要到磁盘中读取数据,直接从内存中读取即可。从内存中读取到页 1,要查找这个 id>=18 and id <40 或者范围值,我们首先需要找到 id=18 的键值。
- 从页 1 中我们可以找到键值 18,此时我们需要根据指针 p2,定位到页 3。
- 要从页 3 中查找数据,我们就需要拿着 p2 指针去磁盘中进行读取页 3。
- 从磁盘中读取页 3 后将页 3 放入内存中,然后进行查找,我们可以找到键值 18,然后再拿到页 3 中的指针 p1,定位到页 8。
- 同样的页 8 页不在内存中,我们需要再去磁盘中将页 8 读取到内存中。
- 将页 8 读取到内存中后。因为页中的数据是链表进行连接的,而且键值是按照顺序存放的,此时可以根据二分查找法定位到键值 18。
- 此时因为已经到数据页了,此时我们已经找到一条满足条件的数据了,就是键值 18 对应的数据。
- 因为是范围查找,而且此时所有的数据又都存在叶子节点,并且是有序排列的,那么我们就可以对页 8 中的键值依次进行遍历查找并匹配满足条件的数据。
- 我们可以一直找到键值为 22 的数据,然后页 8 中就没有数据了,此时我们需要拿着页 8 中的 p 指针去读取页 9 中的数据。
- 因为页 9 不在内存中,就又会加载页 9 到内存中,并通过和页 8 中一样的方式进行数据的查找,直到将页 12 加载到内存中,发现 41 大于 40,此时不满足条件。那么查找到此终止。
- 最终我们找到满足条件的所有数据,总共 12 条记录:
(18,kl), (19,kl), (22,hj), (24,io), (25,vg) , (29,jk), (31,jk) , (33,rt) , (34,ty) , (35,yu) , (37,rt) , (39,rt) 。
PS: 每读取一页,等于一次磁盘IO
6.3 利用非聚集索引查找数据
假设有一张学生表,使用主键以外的name字段作索引,会生成非聚簇索引的b+树。
在叶子节点中,不再存储所有的数据了,存储的是键值和主键。
当我们想查找某一行数据时,在非聚簇索引中会查到一个主键,
然后再把主键扔到聚簇索引中查找,步骤如上一个标题
七、使用聚集索引需要注意什么?
- 当使用主键为聚簇索引时,主键最好不要使用uuid,因为uuid的值太过离散,不适合排序且可能出线新增加记录的uuid,会插入在索引树中间的位置,导致索引树调整复杂度变大,消耗更多的时间和资源。
- 建议使用int类型的自增,方便排序并且默认会在索引树的末尾增加主键值,对索引树的结构影响最小。而且,主键值占用的存储空间越大,辅助索引中保存的主键值也会跟着变大,占用存储空间,也会影响到IO操作读取到的数据量。

八、为什么主键通常建议使用自增id
聚簇索引的数据的物理存放顺序与索引顺序是一致的,即:只要索引是相邻的,那么对应的数据一定也是相邻地存放在磁盘上的。如果主键不是自增id,那么可以想象,它会干些什么,不断地调整数据的物理地址、分页,当然也有其他一些措施来减少这些操作,但却无法彻底避免。但,如果是自增的,那就简单了,它只需要一页一页地写,索引结构相对紧凑,磁盘碎片少,效率也高。
九、 什么情况下无法利用索引呢?
9.1 查询语句中使用LIKE关键字
在查询语句中使用 LIKE 关键字进行查询时,如果匹配字符串的第一个字符为“%”,索引不会被使用。如果“%”不是在第一个位置,索引就会被使用。
9.2 查询语句中使用多列索引(最左匹配)
多列索引是在表的多个字段上创建一个索引,只有查询条件中使用了这些字段中的第一个字段,索引才会被使用。
9.3 查询语句中使用OR关键字
查询语句只有OR关键字时,如果OR前后的两个条件的列都是索引,那么查询中将使用索引。如果OR前后有一个条件的列不是索引,那么查询中将不使用索引。
十、慢查询优化
10.1 索引创建原则
-
最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
-
=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式。
-
尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录。
-
索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’)。
-
尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可。
10.2 查询优化神器 - explain命令
关于explain命令相信大家并不陌生,具体用法和字段含义可以参考官网explain-output,这里需要强调rows是核心指标,绝大部分rows小的语句执行一定很快(有例外,下面会讲到)。所以优化语句基本上都是在优化rows。
10.3 慢查询优化基本步骤
-
先运行看看是否真的很慢,注意设置SQL_NO_CACHE
-
where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高
-
explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询)
-
order by limit 形式的sql语句让排序的表优先查
-
了解业务方使用场景
-
加索引时参照建索引的几大原则
-
观察结果,不符合预期继续从0分析
10.4 几个慢查询案例
10.4.1 复杂语句写法
很多情况下,我们写SQL只是为了实现功能,这只是第一步,不同的语句书写方式对于效率往往有本质的差别,这要求我们对mysql的执行计划和索引原则有非常清楚的认识,请看下面的语句:
select
distinct cert.emp_id
from
cm_log cl
inner join
(
select
emp.id as emp_id,
emp_cert.id as cert_id
from
employee emp
left join
emp_certificate emp_cert
on emp.id = emp_cert.emp_id
where
emp.is_deleted=0
) cert
on (
cl.ref_table='Employee'
and cl.ref_oid= cert.emp_id
)
or (
cl.ref_table='EmpCertificate'
and cl.ref_oid= cert.cert_id
)
where
cl.last_upd_date >='2013-11-07 15:03:00'
and cl.last_upd_date<='2013-11-08 16:00:00';
0.先运行一下,53条记录 1.87秒,又没有用聚合语句,比较慢
53 rows in set (1.87 sec)
1.explain
+----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+
| 1 | PRIMARY | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where; Using temporary |
| 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 63727 | Using where; Using join buffer |
| 2 | DERIVED | emp | ALL | NULL | NULL | NULL | NULL | 13317 | Using where |
| 2 | DERIVED | emp_cert | ref | emp_certificate_empid | emp_certificate_empid | 4 | meituanorg.emp.id | 1 | Using index |
+----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+
简述一下执行计划,首先mysql根据idx_last_upd_date索引扫描cm_log表获得379条记录;然后查表扫描了63727条记录,分为两部分,derived表示构造表,也就是不存在的表,可以简单理解成是一个语句形成的结果集,后面的数字表示语句的ID。derived2表示的是ID = 2的查询构造了虚拟表,并且返回了63727条记录。我们再来看看ID = 2的语句究竟做了写什么返回了这么大量的数据,首先全表扫描employee表13317条记录,然后根据索引emp_certificate_empid关联emp_certificate表,rows = 1表示,每个关联都只锁定了一条记录,效率比较高。获得后,再和cm_log的379条记录根据规则关联。从执行过程上可以看出返回了太多的数据,返回的数据绝大部分cm_log都用不到,因为cm_log只锁定了379条记录。
如何优化呢?可以看到我们在运行完后还是要和cm_log做join,那么我们能不能之前和cm_log做join呢?仔细分析语句不难发现,其基本思想是如果cm_log的ref_table是EmpCertificate就关联emp_certificate表,如果ref_table是Employee就关联employee表,我们完全可以拆成两部分,并用union连接起来,注意这里用union,而不用union all是因为原语句有“distinct”来得到唯一的记录,而union恰好具备了这种功能。如果原语句中没有distinct不需要去重,我们就可以直接使用union all了,因为使用union需要去重的动作,会影响SQL性能。
优化过的语句如下:
select
emp.id
from
cm_log cl
inner join
employee emp
on cl.ref_table = 'Employee'
and cl.ref_oid = emp.id
where
cl.last_upd_date >='2013-11-07 15:03:00'
and cl.last_upd_date<='2013-11-08 16:00:00'
and emp.is_deleted = 0
union
select
emp.id
from
cm_log cl
inner join
emp_certificate ec
on cl.ref_table = 'EmpCertificate'
and cl.ref_oid = ec.id
inner join
employee emp
on emp.id = ec.emp_id
where
cl.last_upd_date >='2013-11-07 15:03:00'
and cl.last_upd_date<='2013-11-08 16:00:00'
and emp.is_deleted = 0
4.不需要了解业务场景,只需要改造的语句和改造之前的语句保持结果一致
5.现有索引可以满足,不需要建索引
6.用改造后的语句实验一下,只需要10ms 降低了近200倍!
+----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+
| 1 | PRIMARY | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where |
| 1 | PRIMARY | emp | eq_ref | PRIMARY | PRIMARY | 4 | meituanorg.cl.ref_oid | 1 | Using where |
| 2 | UNION | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where |
| 2 | UNION | ec | eq_ref | PRIMARY,emp_certificate_empid | PRIMARY | 4 | meituanorg.cl.ref_oid | 1 | |
| 2 | UNION | emp | eq_ref | PRIMARY | PRIMARY | 4 | meituanorg.ec.emp_id | 1 | Using where |
| NULL | UNION RESULT | <union1,2> | ALL | NULL | NULL | NULL | NULL | NULL | |
+----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+
53 rows in set (0.01 sec)
10.4.2 明确应用场景
举这个例子的目的在于颠覆我们对列的区分度的认知,一般上我们认为区分度越高的列,越容易锁定更少的记录,但在一些特殊的情况下,这种理论是有局限性的。
select
*
from
stage_poi sp
where
sp.accurate_result=1
and (
sp.sync_status=0
or sp.sync_status=2
or sp.sync_status=4
);
0.先看看运行多长时间,951条数据6.22秒,真的很慢。
951 rows in set (6.22 sec)
1.先explain,rows达到了361万,type = ALL表明是全表扫描。
+----+-------------+-------+------+---------------+------+---------+------+---------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+---------+-------------+
| 1 | SIMPLE | sp | ALL | NULL | NULL | NULL | NULL | 3613155 | Using where |
+----+-------------+-------+------+---------------+------+---------+------+---------+-------------+
2.所有字段都应用查询返回记录数,因为是单表查询 0已经做过了951条。
3.让explain的rows 尽量逼近951。
看一下accurate_result = 1的记录数:
select count(*),accurate_result from stage_poi group by accurate_result;
+----------+-----------------+
| count(*) | accurate_result |
+----------+-----------------+
| 1023 | -1 |
| 2114655 | 0 |
| 972815 | 1 |
+----------+-----------------+
我们看到accurate_result这个字段的区分度非常低,整个表只有-1,0,1三个值,加上索引也无法锁定特别少量的数据。
再看一下sync_status字段的情况:
select count(*),sync_status from stage_poi group by sync_status;
+----------+-------------+
| count(*) | sync_status |
+----------+-------------+
| 3080 | 0 |
| 3085413 | 3 |
+----------+-------------+
同样的区分度也很低,根据理论,也不适合建立索引。
问题分析到这,好像得出了这个表无法优化的结论,两个列的区分度都很低,即便加上索引也只能适应这种情况,很难做普遍性的优化,比如当sync_status 0、3分布的很平均,那么锁定记录也是百万级别的。
4.找业务方去沟通,看看使用场景。业务方是这么来使用这个SQL语句的,每隔五分钟会扫描符合条件的数据,处理完成后把sync_status这个字段变成1,五分钟符合条件的记录数并不会太多,1000个左右。了解了业务方的使用场景后,优化这个SQL就变得简单了,因为业务方保证了数据的不平衡,如果加上索引可以过滤掉绝大部分不需要的数据。
5.根据建立索引规则,使用如下语句建立索引
alter table stage_poi add index idx_acc_status(accurate_result,sync_status);
6.观察预期结果,发现只需要200ms,快了30多倍。
952 rows in set (0.20 sec)
我们再来回顾一下分析问题的过程,单表查询相对来说比较好优化,大部分时候只需要把where条件里面的字段依照规则加上索引就好,如果只是这种“无脑”优化的话,显然一些区分度非常低的列,不应该加索引的列也会被加上索引,这样会对插入、更新性能造成严重的影响,同时也有可能影响其它的查询语句。所以我们第4步调差SQL的使用场景非常关键,我们只有知道这个业务场景,才能更好地辅助我们更好的分析和优化查询语句。
10.4.3 无法优化的语句
select
c.id,
c.name,
c.position,
c.sex,
c.phone,
c.office_phone,
c.feature_info,
c.birthday,
c.creator_id,
c.is_keyperson,
c.giveup_reason,
c.status,
c.data_source,
from_unixtime(c.created_time) as created_time,
from_unixtime(c.last_modified) as last_modified,
c.last_modified_user_id
from
contact c
inner join
contact_branch cb
on c.id = cb.contact_id
inner join
branch_user bu
on cb.branch_id = bu.branch_id
and bu.status in (
1,
2)
inner join
org_emp_info oei
on oei.data_id = bu.user_id
and oei.node_left >= 2875
and oei.node_right <= 10802
and oei.org_category = - 1
order by
c.created_time desc limit 0 ,
10;
还是几个步骤。
0.先看语句运行多长时间,10条记录用了13秒,已经不可忍受。
10 rows in set (13.06 sec)
1.explain
+----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+
| 1 | SIMPLE | oei | ref | idx_category_left_right,idx_data_id | idx_category_left_right | 5 | const | 8849 | Using where; Using temporary; Using filesort |
| 1 | SIMPLE | bu | ref | PRIMARY,idx_userid_status | idx_userid_status | 4 | meituancrm.oei.data_id | 76 | Using where; Using index |
| 1 | SIMPLE | cb | ref | idx_branch_id,idx_contact_branch_id | idx_branch_id | 4 | meituancrm.bu.branch_id | 1 | |
| 1 | SIMPLE | c | eq_ref | PRIMARY | PRIMARY | 108 | meituancrm.cb.contact_id | 1 | |
+----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+
从执行计划上看,mysql先查org_emp_info表扫描8849记录,再用索引idx_userid_status关联branch_user表,再用索引idx_branch_id关联contact_branch表,最后主键关联contact表。
rows返回的都非常少,看不到有什么异常情况。我们在看一下语句,发现后面有order by + limit组合,会不会是排序量太大搞的?于是我们简化SQL,去掉后面的order by 和 limit,看看到底用了多少记录来排序。
select
count(*)
from
contact c
inner join
contact_branch cb
on c.id = cb.contact_id
inner join
branch_user bu
on cb.branch_id = bu.branch_id
and bu.status in (
1,
2)
inner join
org_emp_info oei
on oei.data_id = bu.user_id
and oei.node_left >= 2875
and oei.node_right <= 10802
and oei.org_category = - 1
+----------+
| count(*) |
+----------+
| 778878 |
+----------+
1 row in set (5.19 sec)
发现排序之前居然锁定了778878条记录,如果针对70万的结果集排序,将是灾难性的,怪不得这么慢,那我们能不能换个思路,先根据contact的created_time排序,再来join会不会比较快呢?
于是改造成下面的语句,也可以用straight_join来优化:
select
c.id,
c.name,
c.position,
c.sex,
c.phone,
c.office_phone,
c.feature_info,
c.birthday,
c.creator_id,
c.is_keyperson,
c.giveup_reason,
c.status,
c.data_source,
from_unixtime(c.created_time) as created_time,
from_unixtime(c.last_modified) as last_modified,
c.last_modified_user_id
from
contact c
where
exists (
select
1
from
contact_branch cb
inner join
branch_user bu
on cb.branch_id = bu.branch_id
and bu.status in (
1,
2)
inner join
org_emp_info oei
on oei.data_id = bu.user_id
and oei.node_left >= 2875
and oei.node_right <= 10802
and oei.org_category = - 1
where
c.id = cb.contact_id
)
order by
c.created_time desc limit 0 ,
10;
验证一下效果 预计在1ms内,提升了13000多倍!
rows in ***\*set\**** (0.00 sec)
本以为至此大工告成,但我们在前面的分析中漏了一个细节,先排序再join和先join再排序理论上开销是一样的,为何提升这么多是因为有一个limit!大致执行过程是:mysql先按索引排序得到前10条记录,然后再去join过滤,当发现不够10条的时候,再次去10条,再次join,这显然在内层join过滤的数据非常多的时候,将是灾难的,极端情况,内层一条数据都找不到,mysql还傻乎乎的每次取10条,几乎遍历了这个数据表!
用不同参数的SQL试验下:
select
sql_no_cache c.id,
c.name,
c.position,
c.sex,
c.phone,
c.office_phone,
c.feature_info,
c.birthday,
c.creator_id,
c.is_keyperson,
c.giveup_reason,
c.status,
c.data_source,
from_unixtime(c.created_time) as created_time,
from_unixtime(c.last_modified) as last_modified,
c.last_modified_user_id
from
contact c
where
exists (
select
1
from
contact_branch cb
inner join
branch_user bu
on cb.branch_id = bu.branch_id
and bu.status in (
1,
2)
inner join
org_emp_info oei
on oei.data_id = bu.user_id
and oei.node_left >= 2875
and oei.node_right <= 2875
and oei.org_category = - 1
where
c.id = cb.contact_id
)
order by
c.created_time desc limit 0 ,
10;
Empty set (2 min 18.99 sec)
2 min 18.99 sec!比之前的情况还糟糕很多。由于mysql的nested loop机制,遇到这种情况,基本是无法优化的。这条语句最终也只能交给应用系统去优化自己的逻辑了。
通过这个例子我们可以看到,并不是所有语句都能优化,而往往我们优化时,由于SQL用例回归时落掉一些极端情况,会造成比原来还严重的后果。所以,第一:不要指望所有语句都能通过SQL优化,第二:不要过于自信,只针对具体case来优化,而忽略了更复杂的情况。
慢查询的案例就分析到这儿,以上只是一些比较典型的案例。我们在优化过程中遇到过超过1000行,涉及到16个表join的“垃圾SQL”,也遇到过线上线下数据库差异导致应用直接被慢查询拖死,也遇到过varchar等值比较没有写单引号,还遇到过笛卡尔积查询直接把从库搞死。再多的案例其实也只是一些经验的积累,如果我们熟悉查询优化器、索引的内部原理,那么分析这些案例就变得特别简单了。

浙公网安备 33010602011771号