flink 两个datastream实现left_join的两种方法

本文只是以left_join作为举例,right_join,full_join 等是同理的,大家可以自行扩展

 

1. 实验思路

  1.提供两个流

            nameStream: 用户名称信息从 9999 端口获取

            ageStream: 有用户年龄信息 从9998 端口获取

  2. 用nameStream left join  ageStream ,合并两个流中的信息,输出结果

 

2. 方法

     1【简单】: 使用 coGroup 来进行left join. 

     2【复杂】:使用 nameStream join (nameStream.union(ageStream)) 后, 按id 分组,判断分组后记录的个数。

                    偶数时,代表同一个id,会有俩次匹配,一次是left*left, 一次是 left * right, 返回非自身匹配就可以,也就是 left*right;

                    奇数时,代表只有一次 left*left 直接返回

 

3.代码

公用对象:

import java.text.SimpleDateFormat
import java.util.Date

import com.alibaba.fastjson.JSON
import com.alibaba.fastjson.serializer.SerializerFeature

import scala.beans.BeanProperty

object Const {
  final val names = List("wang", "li", "zhao", "qian", "sun")
  final val ages = List(0, 10, 20, 30)
  final val dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
}

case class People(
                   @BeanProperty var id: Int = 0,
                   @BeanProperty var name: String = "",
                   @BeanProperty var age: Int = 0,
                   @BeanProperty var eventTime: Long = 0,
                   @BeanProperty var eventTimeStr: String = ""
                 ) {

  override def toString: String = {
    JSON.toJSONString(this, SerializerFeature.QuoteFieldNames)
  }
}

object People {
  def newPeopleByName(id: Int, name: String) = {
    val than = new People()
    val now = new Date()
    than.id = id
    than.name = name
    than.eventTime = now.getTime
    than.eventTimeStr = Const.dateFormat.format(now)
    than
  }

  def newPeopleByAge(id: Int, age: Int) = {
    val than = new People()
    val now = new Date()
    than.id = id
    than.age = age
    than.eventTime = now.getTime
    than.eventTimeStr = Const.dateFormat.format(now)
    than
  }
}
People

 

stream 测试:

import java.lang

import org.apache.flink.api.common.functions.{CoGroupFunction, JoinFunction}
import org.apache.flink.api.scala._
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.functions.AssignerWithPeriodicWatermarks
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.scala.function.RichWindowFunction
import org.apache.flink.streaming.api.watermark.Watermark
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.api.windowing.windows.TimeWindow
import org.apache.flink.util.Collector


object DataStreamCoGroup {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
    env.setParallelism(1)
    val WIN = 10 // s

    // id,name
    val nameStream = env
      //      .addSource(new NameSource)
      .socketTextStream("localhost", 9999)
      .filter(_.nonEmpty)
      .map(x => {
        val arr = x.split(",")
        People.newPeopleByName(id = arr(0).toInt, name = arr(1))
      })
      .assignTimestampsAndWatermarks(
        new BoundedOutOfOrdernessTimestampExtractor[People](Time.seconds(10L)) {
          override def extractTimestamp(element: People): Long = element.eventTime
        })

    // id,age
    val ageStream = env
      //      .addSource(new AgeSource)
      .socketTextStream("localhost", 9998)
      .filter(_.nonEmpty)
      .map(x => {
        val arr = x.split(",")
        People.newPeopleByAge(id = arr(0).toInt, age = arr(1).toInt)
      })
      .assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks[People] {
        val maxOutOfOrderness = 1000L // 最大无序数据到达的时间,用来生成水印,10s
        var currentMaxTimestamp: Long = _

        override def getCurrentWatermark: Watermark = {
          new Watermark(currentMaxTimestamp - maxOutOfOrderness)
        }

        override def extractTimestamp(element: People, previousElementTimestamp: Long): Long = {
          currentMaxTimestamp = Math.max(element.eventTime, currentMaxTimestamp)
          element.eventTime
        }
      })

    nameStream
      .map(("name:", _))
      .print()

    ageStream
      .map(("age:", _))
      .print()

    // coGroup
    nameStream
      .coGroup(ageStream)
      .where(_.id).equalTo(_.id)
      .window(TumblingEventTimeWindows.of(Time.seconds(WIN)))
      .apply(new CoGroupFunction[People, People, People] {
        override def coGroup(first: lang.Iterable[People], second: lang.Iterable[People], out: Collector[People]): Unit = {
          if (first.iterator().hasNext) {
            first.forEach(left => {
              var noElement = true
              if (second.iterator().hasNext) {
                second.forEach(rigth => {
                  noElement = false
                  val data = left.copy()
                  data.age = rigth.age
                  out.collect(data)
                })
              }
              if (noElement) out.collect(left)
            })
          }

        }
      })
      .map(("-------- coGroup left Join", _))
      .print()

    // -------------------------------------------
    //   left join
    val nameStream2 = nameStream.map((_, "nameStream"))
    val ageStream2 = ageStream.map((_, "ageStream"))
    //    nameStream2
    //      .print()
    //
    //    ageStream2
    //      .print()

    nameStream2
      .join(nameStream2.union(ageStream2))
      .where(_._1.id)
      .equalTo(_._1.id)
      .window(TumblingEventTimeWindows.of(Time.seconds(WIN)))
      .apply(new JoinFunction[Tuple2[People, String], Tuple2[People, String], Tuple2[People, Boolean]] {
        override def join(first: (People, String), second: (People, String)): (People, Boolean) = {
          val data = first._1.copy()
          var same = true // 是否和自身连接
          if (second._2.equals("ageStream")) {
            same = false
            data.age = second._1.age
          }
          (data, same)
        }
      })
      .keyBy(_._1.id)
      .window(TumblingEventTimeWindows.of(Time.seconds(WIN)))
      .apply(new RichWindowFunction[Tuple2[People, Boolean], People, Int, TimeWindow] {
        override def apply(key: Int, window: TimeWindow, input: Iterable[(People, Boolean)], out: Collector[People]): Unit = {
          var len = 0
          var same: People = null
          var unSame: People = null
          for (i <- input.iterator) {
            len += 1
            if (i._2) same = i._1.copy() // a1,a1
            else unSame = i._1.copy() //  a1,a2
          }

          if (len % 2 == 0) out.collect(unSame) // 偶数返回 a1,a2
          else out.collect(same) // 奇数返回 a1,a1
        }
      })
      .map(("-------- left Join ", _))
      .print()


    env.execute("DataStreamCoGroup")
  }
}

 

4. 测试

   1. name 9999: [0s,10s)内输入 

(name:,{"age":0,"eventTime":1602951665626,"eventTimeStr":"2020-10-18 00:21:05","id":1,"name":"1"})
(name:,{"age":0,"eventTime":1602951668775,"eventTimeStr":"2020-10-18 00:21:08","id":3,"name":"3"})

 

   2.age 9998: [0s,10s)内输入(1,1),(3,3)

(age:,{"age":1,"eventTime":1602951661454,"eventTimeStr":"2020-10-18 00:21:01","id":1,"name":""})
(age:,{"age":2,"eventTime":1602951662457,"eventTimeStr":"2020-10-18 00:21:02","id":2,"name":""})

 

   3. 10s 过去后,再等1s 的水印延迟时间, 分别在两个流中输入任意信息,主要是为了更新水印信息触发window 计算

(name:,{"age":0,"eventTime":1602951682681,"eventTimeStr":"2020-10-18 00:21:22","id":4,"name":"4"})
(age:,{"age":4,"eventTime":1602951688581,"eventTimeStr":"2020-10-18 00:21:28","id":4,"name":""})

   4. 结果:

(-------- coGroup left Join,{"age":1,"eventTime":1602951665626,"eventTimeStr":"2020-10-18 00:21:05","id":1,"name":"1"})
(-------- coGroup left Join,{"age":0,"eventTime":1602951668775,"eventTimeStr":"2020-10-18 00:21:08","id":3,"name":"3"})
(-------- left Join ,{"age":1,"eventTime":1602951665626,"eventTimeStr":"2020-10-18 00:21:05","id":1,"name":"1"})
(-------- left Join ,{"age":0,"eventTime":1602951668775,"eventTimeStr":"2020-10-18 00:21:08","id":3,"name":"3"})

    可以看到,两种方式的结果一致

 

完整的输出:

(age:,{"age":1,"eventTime":1602951661454,"eventTimeStr":"2020-10-18 00:21:01","id":1,"name":""})
(age:,{"age":2,"eventTime":1602951662457,"eventTimeStr":"2020-10-18 00:21:02","id":2,"name":""})
(name:,{"age":0,"eventTime":1602951665626,"eventTimeStr":"2020-10-18 00:21:05","id":1,"name":"1"})
(name:,{"age":0,"eventTime":1602951668775,"eventTimeStr":"2020-10-18 00:21:08","id":3,"name":"3"})
(name:,{"age":0,"eventTime":1602951682681,"eventTimeStr":"2020-10-18 00:21:22","id":4,"name":"4"})
(age:,{"age":4,"eventTime":1602951688581,"eventTimeStr":"2020-10-18 00:21:28","id":4,"name":""})
(-------- coGroup left Join,{"age":1,"eventTime":1602951665626,"eventTimeStr":"2020-10-18 00:21:05","id":1,"name":"1"})
(-------- coGroup left Join,{"age":0,"eventTime":1602951668775,"eventTimeStr":"2020-10-18 00:21:08","id":3,"name":"3"})
(-------- left Join ,{"age":1,"eventTime":1602951665626,"eventTimeStr":"2020-10-18 00:21:05","id":1,"name":"1"})
(-------- left Join ,{"age":0,"eventTime":1602951668775,"eventTimeStr":"2020-10-18 00:21:08","id":3,"name":"3"})

 

posted @ 2020-10-18 00:56  feiquan  阅读(144)  评论(0编辑  收藏