京东口红top 30分析

一、抓取商品id

分析网页源码,发现所有id都是在class=“gl-item”的标签里,可以利用bs4的select方法查找标签,获取id:

 

获取id后,分析商品页面可知道每个商品页面就是id号不同,可构造url:

 

将获取的id和构造的url保存在列表里,如下源码:

 1 def get_product_url(url):
 2     global pid
 3     global links
 4     req = urllib.request.Request(url)
 5     req.add_header("User-Agent",
 6                    'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 '
 7                    '(KHTML, like Gecko) Chrome/60.0.3112.101 Safari/537.36')
 8     req.add_header("GET", url)
 9     content = urllib.request.urlopen(req).read()
10     soup = bs4.BeautifulSoup(content, "lxml")
11     product_id = soup.select('.gl-item')
12     for i in range(len(product_id)):
13         lin = "https://item.jd.com/" + str(product_id[i].get('data-sku')) + ".html"
14         # 获取链接
15         links.append(lin)
16         # 获取id
17         pid.append(product_id[i].get('data-sku'))

 二、获取商品信息

通过商品页面获取商品的基本信息(商品名,店名,价格等):

 1         product_url = links[i]
 2         req = urllib.request.Request(product_url)
 3         req.add_header("User-Agent",
 4                        'Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:56.0) Gecko/20100101 Firefox/56.0')
 5         req.add_header("GET", product_url)
 6         content = urllib.request.urlopen(req).read()
 7         # 获取商品页面源码
 8         soup = bs4.BeautifulSoup(content, "lxml")
 9         # 获取商品名
10         sku_name = soup.select_one('.sku-name').getText().strip()
11         # 获取商店名
12         try:
13             shop_name = soup.find(clstag="shangpin|keycount|product|dianpuname1").get('title')
14         except:
15             shop_name = soup.find(clstag="shangpin|keycount|product|zcdpmc_oversea").get('title')
16         # 获取商品ID
17         sku_id = str(pid[i]).ljust(20)
18         # 获取商品价格

通过抓取评论的json页面获取商品热评、好评率、评论:

获取热评源码:

 1 def get_product_comment(product_id):
 2     comment_url = 'https://club.jd.com/comment/productPageComments.action?' \
 3                   'callback=fetchJSON_comment98vv16496&' \
 4                   'productId={}&' \
 5                   'score=0&' \
 6                   'sortType=6&' \
 7                   'page=0&' \
 8                   'pageSize=10' \
 9                   '&isShadowSku=0'.format(str(product_id))
10     response = urllib.request.urlopen(comment_url).read().decode('gbk', 'ignore')
11     response = re.search(r'(?<=fetchJSON_comment98vv16496\().*(?=\);)', response).group(0)
12     response_json = json.loads(response)
13     # 获取商品热评
14     hot_comments = []
15     hot_comment = response_json['hotCommentTagStatistics']
16     for h_comment in hot_comment:
17         hot = str(h_comment['name'])
18         count = str(h_comment['count'])
19         hot_comments.append(hot + '(' + count + ')')
20     return ','.join(hot_comments)

 获取好评率源码:

 1 def get_good_percent(product_id):
 2     comment_url = 'https://club.jd.com/comment/productPageComments.action?' \
 3                   'callback=fetchJSON_comment98vv16496&' \
 4                   'productId={}&' \
 5                   'score=0&' \
 6                   'sortType=6&' \
 7                   'page=0&' \
 8                   'pageSize=10' \
 9                   '&isShadowSku=0'.format(str(product_id))
10     response = requests.get(comment_url).text
11     response = re.search(r'(?<=fetchJSON_comment98vv16496\().*(?=\);)', response).group(0)
12     response_json = json.loads(response)
13     # 获取好评率
14     percent = response_json['productCommentSummary']['goodRateShow']
15     percent = str(percent) + '%'
16     return percent

 获取评论源码:

 1 def get_comment(product_id, page):
 2     global word
 3     comment_url = 'https://club.jd.com/comment/productPageComments.action?' \
 4                   'callback=fetchJSON_comment98vv16496&' \
 5                   'productId={}&' \
 6                   'score=0&' \
 7                   'sortType=6&' \
 8                   'page={}&' \
 9                   'pageSize=10' \
10                   '&isShadowSku=0'.format(str(product_id), str(page))
11     response = urllib.request.urlopen(comment_url).read().decode('gbk', 'ignore')
12     response = re.search(r'(?<=fetchJSON_comment98vv16496\().*(?=\);)', response).group(0)
13     response_json = json.loads(response)
14     # 写入评论.csv
15     comment_file = open('{0}\\评论.csv'.format(path), 'a', newline='', encoding='utf-8', errors='ignore')
16     write = csv.writer(comment_file)
17     # 获取用户评论
18     comment_summary = response_json['comments']
19     for content in comment_summary:
20         # 评论时间
21         creation_time = str(content['creationTime'])
22         # 商品颜色
23         product_color = str(content['productColor'])
24         # 商品名称
25         reference_name = str(content['referenceName'])
26         # 客户评分
27         score = str(content['score'])
28         # 客户评论
29         content = str(content['content']).strip()
30         # 记录评论
31         word.append(content)
32         write.writerow([product_id, reference_name, product_color, creation_time, score, content])
33     comment_file.close()

 整体获取商品信息源码:

 1 def get_product_info():
 2     global pid
 3     global links
 4     global word
 5     # 创建评论.csv
 6     comment_file = open('{0}\\评论.csv'.format(path), 'w', newline='')
 7     write = csv.writer(comment_file)
 8     write.writerow(['商品id', '商品', '颜色', '评论时间', '客户评分', '客户评论'])
 9     comment_file.close()
10     # 创建商品.csv
11     product_file = open('{0}\\商品.csv'.format(path), 'w', newline='')
12     product_write = csv.writer(product_file)
13     product_write.writerow(['商品id', '所属商店', '商品', '价格', '商品好评率', '商品评价'])
14     product_file.close()
15 
16     for i in range(len(pid)):
17         print('[*]正在收集数据。。。')
18         product_url = links[i]
19         req = urllib.request.Request(product_url)
20         req.add_header("User-Agent",
21                        'Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:56.0) Gecko/20100101 Firefox/56.0')
22         req.add_header("GET", product_url)
23         content = urllib.request.urlopen(req).read()
24         # 获取商品页面源码
25         soup = bs4.BeautifulSoup(content, "lxml")
26         # 获取商品名
27         sku_name = soup.select_one('.sku-name').getText().strip()
28         # 获取商店名
29         try:
30             shop_name = soup.find(clstag="shangpin|keycount|product|dianpuname1").get('title')
31         except:
32             shop_name = soup.find(clstag="shangpin|keycount|product|zcdpmc_oversea").get('title')
33         # 获取商品ID
34         sku_id = str(pid[i]).ljust(20)
35         # 获取商品价格
36         price_url = 'https://p.3.cn/prices/mgets?pduid=1580197051&skuIds=J_{}'.format(pid[i])
37         response = requests.get(price_url).content
38         price = json.loads(response)
39         price = price[0]['p']
40         # 写入商品.csv
41         product_file = open('{0}\\商品.csv'.format(path), 'a', newline='', encoding='utf-8', errors='ignore')
42         product_write = csv.writer(product_file)
43         product_write.writerow(
44             [sku_id, shop_name, sku_name, price, get_good_percent(pid[i]), get_product_comment(pid[i])])
45         product_file.close()
46         pages = int(get_comment_count(pid[i]))
47         word = []
48         try:
49             for j in range(pages):
50                 get_comment(pid[i], j)
51         except Exception as e:
52             print("[!!!]{}商品评论加载失败!".format(pid[i]))
53             print("[!!!]Error:{}".format(e))
54 
55         print('[*]第{}件商品{}收集完毕!'.format(i + 1, pid[i]))56         # 的生成词云
57         word = " ".join(word)
58         my_wordcloud = WordCloud(font_path='C:\Windows\Fonts\STZHONGS.TTF', background_color='white').generate(word)
59         my_wordcloud.to_file("{}.jpg".format(pid[i]))

 将商品信息和评论写入表格,生成评论词云:

 

三、总结

        在爬取的过程中遇到最多的问题就是编码问题,获取页面的内容requset到的都是bytes类型的要decode(”gbk”),后来还是存在编码问题,最后找到一些文章说明,在后面加“ignore”可以解决,由于爬取的量太大,会有一些数据丢失,不过数据量够大也不影响对商品分析。

posted @ 2017-11-02 22:17  fe1j1  阅读(1362)  评论(1编辑  收藏  举报