实验5
试验任务1
源代码
publisher.hpp
点击查看代码
#pragma once
#include <string>
// 发行/出版物类:Publisher (抽象类)
class Publisher {
public:
Publisher(const std::string &name_ = ""); // 构造函数
virtual ~Publisher() = default;
public:
virtual void publish() const = 0; // 纯虚函数,作为接口继承
virtual void use() const = 0; // 纯虚函数,作为接口继承
protected:
std::string name; // 发行/出版物名称
};
// 图书类: Book
class Book: public Publisher {
public:
Book(const std::string &name_ = "", const std::string &author_ = ""); // 构造函数
void publish() const override; // 接口
void use() const override; // 接口
private:
std::string author; // 作者
};
// 电影类: Film
class Film: public Publisher {
public:
Film(const std::string &name_ = "", const std::string &director_ = ""); // 构造函数
public:
void publish() const override; // 接口
void use() const override; // 接口
private:
std::string director; // 导演
};
// 音乐类:Music
class Music: public Publisher {
public:
Music(const std::string &name_ = "", const std::string &artist_ = "");
public:
void publish() const override; // 接口
void use() const override; // 接口
private:
std::string artist; // 音乐艺术家名称
};
publisher.cpp
点击查看代码
#include <iostream>
#include <string>
#include "publisher.hpp"
// Publisher类:实现
Publisher::Publisher(const std::string &name_): name {name_} {
}
// Book类: 实现
Book::Book(const std::string &name_ , const std::string &author_ ): Publisher{name_}, author{author_} {
}
void Book::publish() const {
std::cout << "Publishing book《" << name << "》 by " << author << '\n';
}
void Book::use() const {
std::cout << "Reading book 《" << name << "》 by " << author << '\n';
}
// Film类:实现
Film::Film(const std::string &name_, const std::string &director_):Publisher{name_},director{director_} {
}
void Film::publish() const {
std::cout << "Publishing film <" << name << "> directed by " << director << '\n';
}
void Film::use() const {
std::cout << "Watching film <" << name << "> directed by " << director << '\n';
}
// Music类:实现
Music::Music(const std::string &name_, const std::string &artist_): Publisher{name_}, artist{artist_} {
}
void Music::publish() const {
std::cout << "Publishing music <" << name << "> by " << artist << '\n';
}
void Music::use() const {
std::cout << "Listening to music <" << name << "> by " << artist << '\n';
}
task1.cpp
点击查看代码
#include <memory>
#include <iostream>
#include <vector>
#include "publisher.hpp"
void test1() {
std::vector<Publisher *> v;
v.push_back(new Book("Harry Potter", "J.K. Rowling"));
v.push_back(new Film("The Godfather", "Francis Ford Coppola"));
v.push_back(new Music("Blowing in the wind", "Bob Dylan"));
for(Publisher *ptr: v) {
ptr->publish();
ptr->use();
std::cout << '\n';
delete ptr;
}
}
void test2() {
std::vector<std::unique_ptr<Publisher>> v;
v.push_back(std::make_unique<Book>("Harry Potter", "J.K. Rowling"));
v.push_back(std::make_unique<Film>("The Godfather", "Francis Ford Coppola"));
v.push_back(std::make_unique<Music>("Blowing in the wind", "Bob Dylan"));
for(const auto &ptr: v) {
ptr->publish();
ptr->use();
std::cout << '\n';
}
}
void test3() {
Book book("A Philosophy of Software Design", "John Ousterhout");
book.publish();
book.use();
}
int main() {
//不允许使用抽象类的对象Publisher p;
std::cout << "运行时多态:纯虚函数、抽象类\n";
std::cout << "\n测试1: 使用原始指针\n";
test1();
std::cout << "\n测试2: 使用智能指针\n";
test2();
std::cout << "\n测试3: 直接使用类\n";
test3();
}
运行截图

问题1:
(1)Publisher 是抽象类是因为它包含纯虚函数;具体依据是其派生类 Book、Film、Music 均需通过 override 实现 publish() 和 use() 函数,可推断基类 Publisher 中这两个函数声明为纯虚函数(形式为 virtual void publish() const = 0; 和 virtual void use() const = 0;)。
(2)编译不能通过。在 C++ 中,不能创建抽象类的实例(对象)。
问题2:
(1)必须实现publish()和use()这两个函数.
函数声明:
void publish() const override
void use() const override
(2)报错信息是没有找到Film的重载函数。
const 是函数签名的一部分,在 C++ 中,成员函数末尾的 const 关键字会改变函数的签名。这意味着 void Film::publish() const 和 void Film::publish() 被视为两个完全不同的函数。编译器找不到函数声明,所以报错。

问题3:
(1)ptr的声明类型是Publisher。
(2)ptr在三次迭代中分别指向具体的派生类对象:Book、Film、Music,也就是在test1()里面创建的派生类对象。
(3)因为代码里通过基类指针(Publisher)指向并删除派生类对象(delete ptr;)。若基类析构函数是 virtual,在 delete 时会按动态类型分派,先调用派生类析构函数再调用基类析构函数,保证派生类资源正确释放。
如果删除virtual,在VS2022软件环境下运行编译器没有报错。但是通过查询资料,这种行为会导致内存泄漏。
通过 Publisher* 调用 delete ptr; 时,如果基类析构不是 virtual,派生类的析构函数不会被保证调用,派生类中的析构不会运行,从而导致资源未正确释放。
为了验证我的说法,我在三个派生类中手动写一个析构函数
去掉virtual:

加上virtual

我们可以很清楚地看到去掉virtual之后,test1()和test2()中派生类的析构函数没有被调用,虽然程序运行结果没问题,但是这是一个隐患,造成了内存泄漏。
试验任务2
源代码
book.hpp
点击查看代码
#pragma once
#include <string>
class Book {
public:
Book(const std::string& name_, const std::string& auther_, const std::string& translator_, const std::string& isbn_, double price_);
friend std::ostream& operator<<(std::ostream& out, const Book& book);
private:
std::string name;
std::string author;
std::string isbn;
std::string translator;
double price;
};
booksale.hpp
点击查看代码
#pragma once
#include <string>
#include "book.hpp"
// 图书销售记录类BookSales:声明
class BookSale {
public:
BookSale(const Book &rb_, double sales_price_, int sales_amount_);
int get_amount() const; // 返回销售数量
double get_revenue() const; // 返回营收
friend std::ostream& operator<<(std::ostream &out, const BookSale &item);
private:
Book rb;
double sales_price; // 售价
int sales_amount; // 销售数量
};
点击查看代码
#include <iomanip>
#include <iostream>
#include <string>
#include "book.hpp"
Book::Book(const std::string& name_, const std::string& auther_, const std::string& translator_, const std::string& isbn_, double price_) :name{name_},translator{translator_},
isbn{isbn_},price{price_}{ }
std::ostream& operator<<(std::ostream& out, const Book& book) {
using std::left;
using std::setw;
out << left;
out << setw(15) << "书名:" << book.name << '\n'
<< setw(15) << "作者" << book.author << '\n'
<< setw(15) << "译者" << book.translator << '\n'
<< setw(15) << "ISBN" << book.isbn << '\n'
<< setw(15) << "定价" << book.price;
return out;
}
点击查看代码
#include <iomanip>
#include <iostream>
#include <string>
#include "booksale.hpp"
// 图书销售记录类BookSales:实现
BookSale::BookSale(const Book &rb_,
double sales_price_,
int sales_amount_): rb{rb_}, sales_price{sales_price_}, sales_amount{sales_amount_} {
}
int BookSale::get_amount() const {
return sales_amount;
}
double BookSale::get_revenue() const {
return sales_amount * sales_price;
}
// 运算符<<重载实现
std::ostream& operator<<(std::ostream &out, const BookSale &item) {
using std::left;
using std::setw;
out << left;
out << item.rb << '\n'
<< setw(15) << "售价:" << item.sales_price << '\n'
<< setw(15) << "销售数量:" << item.sales_amount << '\n'
<< setw(15) << "营收:" << item.get_revenue();
return out;
}
点击查看代码
#include <algorithm>
#include <iomanip>
#include <iostream>
#include <string>
#include <vector>
#include "booksale.hpp"
// 按图书销售数量比较
bool compare_by_amount(const BookSale &x1, const BookSale &x2) {
return x1.get_amount() > x2.get_amount();
}
void test() {
using std::cin;
using std::cout;
using std::getline;
using std::sort;
using std::string;
using std::vector;
using std::ws;
vector<BookSale> sales_records; // 图书销售记录表
int books_number;
cout << "录入图书数量: ";
cin >> books_number;
cout << "录入图书销售记录\n";
for(int i = 0; i < books_number; ++i) {
string name, author, translator, isbn;
double price;
cout << string(20, '-') << "第" << i+1 << "本图书信息录入" << string(20, '-') << '\n';
cout << "录入书名: "; getline(cin>>ws, name);
cout << "录入作者: "; getline(cin>>ws, author);
cout << "录入译者: "; getline(cin>>ws, translator);
cout << "录入isbn: "; getline(cin>>ws, isbn);
cout << "录入定价: "; cin >> price;
Book book(name, author, translator, isbn, price);
double sales_price;
int sales_amount;
cout << "录入售价: "; cin >> sales_price;
cout << "录入销售数量: "; cin >> sales_amount;
BookSale record(book, sales_price, sales_amount);
sales_records.push_back(record);
}
// 按销售册数排序
sort(sales_records.begin(), sales_records.end(), compare_by_amount);
// 按销售册数降序输出图书销售信息
cout << string(20, '=') << "图书销售统计" << string(20, '=') << '\n';
for(auto &record: sales_records) {
cout << record << '\n';
cout << string(40, '-') << '\n';
}
}
int main() {
test();
}
运行截图

问题1:
(1)<<被重载了两次。分别用于Book和Booksale类型。
(2)
out <<** item.rb **<< '\n'
cout << record << '\n';
问题2:
(1)先定义一个比较函数compare_by_amount,通过std::sort模板函数,对销售册数进行排序。
(2)使用lambda表达式:
std::sort(sales_records.begin(), sales_records.end(),[](const BookSale& a, const BookSale& b) {
return a.get_amount() > b.get_amount();
});
实验任务4
源代码
pet.hpp
点击查看代码
#pragma once
#include <iostream>
#include <string>
//定义抽象类
class MachinePet {
public:
MachinePet(std::string nickname_) : nickname{ nickname_ } {
}
std::string get_nickname()const {
return nickname;
}
virtual std::string talk() const = 0;
virtual ~MachinePet() = default;
private:
std::string nickname;
};
class PetCat : public MachinePet {
public:
PetCat(const std::string &nickname_ ) : MachinePet(nickname_) {
}
std::string talk()const override {
return "喵呜\n";
}
};
class PetDog :public MachinePet{
public:
PetDog(const std::string &nickname_):MachinePet(nickname_){}
std::string talk() const override {
return "汪汪\n";
}
};
task.cpp
点击查看代码
#include <iostream>
#include <memory>
#include <vector>
#include "pet.hpp"
void test1() {
std::vector<MachinePet*> pets;
pets.push_back(new PetCat("miku"));
pets.push_back(new PetDog("da huang"));
for (MachinePet* ptr : pets) {
std::cout << ptr->get_nickname() << " says " << ptr->talk() << '\n';
delete ptr; // 须手动释放资源
}
}
void test2() {
std::vector<std::unique_ptr<MachinePet>> pets;
pets.push_back(std::make_unique<PetCat>("miku"));
pets.push_back(std::make_unique<PetDog>("da huang"));
for (auto const& ptr : pets)
std::cout << ptr->get_nickname() << " says " << ptr->talk() << '\n';
}
void test3() {
// MachinePet pet("little cutie"); // 编译报错:无法定义抽象类对象
const PetCat cat("miku");
std::cout << cat.get_nickname() << " says " << cat.talk() << '\n';
const PetDog dog("da huang");
std::cout << dog.get_nickname() << " says " << dog.talk() << '\n';
}
int main() {
std::cout << "测试1: 使用原始指针\n";
test1();
std::cout << "\n测试2: 使用智能指针\n";
test2();
std::cout << "\n测试3: 直接使用类\n";
test3();
}
运行截图

试验任务五
源代码
Complex.hpp
点击查看代码
#pragma once
#include <iostream>
template<typename T>
class Complex {
public:
Complex(T x = 0, T y = 0) :real{ x }, imag{y}{}
Complex(const Complex<T>& a) {
real = a.real;
imag = a.imag;
}
T get_real()const {
return real;
}
T get_imag() const {
return imag;
}
Complex<T>& operator+=(const Complex<T>& rhs) {
this->real += rhs.real;
this->imag += rhs.imag;
return *this;
}
template<typename T>friend Complex<T> operator+(const Complex<T>& lhs, const Complex<T>& rhs);
template<typename T>friend bool operator==(const Complex<T>& lhs, const Complex<T>& rhs);
template<typename T>friend std::istream& operator>>(std::istream& is, Complex<T>& c);
template<typename T>friend std::ostream& operator<<(std::ostream& os, const Complex<T>& c);
private:
T real, imag;
};
template<typename T>
std::ostream& operator<<(std::ostream& os, const Complex<T>& c) {
os << c.get_real();
if (c.get_imag() >= 0) {
os << " + " << c.get_imag() << "i";
}
else {
os << " - " << -c.get_imag() << "i";
}
return os;
}
template<typename T>
Complex<T> operator+(const Complex<T>& lhs, const Complex<T>& rhs) {
Complex<T> res = lhs;
res += rhs;
return res;
}
template<typename T>
bool operator==(const Complex<T>& lhs, const Complex<T>& rhs) {
return (lhs.get_real() == rhs.get_real()) && (lhs.get_imag() == rhs.get_imag());
}
template<typename T>
std::istream& operator>>(std::istream& is, Complex<T>& c) {
is >> c.real >> c.imag;
if (!is) {
c = Complex<T>();
}
return is;
}
点击查看代码
#include <iostream>
#include "Complex.hpp"
void test1() {
using std::cout;
using std::boolalpha;
Complex<int> c1(2, -5), c2(c1);
cout << "c1 = " << c1 << '\n';
cout << "c2 = " << c2 << '\n';
cout << "c1 + c2 = " << c1 + c2 << '\n';
c1 += c2;
cout << "c1 = " << c1 << '\n';
cout << boolalpha << (c1 == c2) << '\n';
}
void test2() {
using std::cin;
using std::cout;
Complex<double> c1, c2;
cout << "Enter c1 and c2: ";
cin >> c1 >> c2;
cout << "c1 = " << c1 << '\n';
cout << "c2 = " << c2 << '\n';
const Complex<double> c3(c1);
cout << "c3.real = " << c3.get_real() << '\n';
cout << "c3.imag = " << c3.get_imag() << '\n';
}
int main() {
std::cout << "自定义类模板Complex测试1: \n";
test1();
std::cout << "\n自定义类模板Complex测试2: \n";
test2();
}
运行截图

实验总结
1.通过实验,我知道了抽象类不能实例化对象。
2.我了解了在创建派生类的时候,如果你打算让一个类作为基类,并且希望通过基类指针删除派生类对象,那么基类的析构函数必须是虚函数。如果不是虚函数,那么派生类的析构函数不会保证被调用,可能会导致内存泄漏,而这个问题不容易察觉。
3.我学习了一些运算符重载,比如<<、>>、==、+=。运算符重载为了让运算符能够用于用户自定义的数据类型。
4.之前其实不太明白运算符重载设置为成员函数和友元函数的区别,通过实验和查询资料,我总结了一下:
(1)成员函数重载:可以通过this指针访问本类的成员,可以少写一个参数,但是表达式左边的的第一个参数必须是类对象,通过该类对象来调用成员函数。即表达式左侧的左侧运算量就是对象本身。
(2)友元函数重载:左边一般不是对象。比如输入输出运算符<< >>一般都要申明为友元重载函数。

浙公网安备 33010602011771号