• 博客园logo
  • 会员
  • 周边
  • 新闻
  • 博问
  • 闪存
  • 众包
  • 赞助商
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
fangleSea
博客园    首页    新随笔    联系   管理    订阅  订阅
代码随想录|动态规划-01背包问题
二维和一维01背包
416. 分割等和子集
1049. 最后一块石头的重量 II 
494. 目标和
474.一和零 

 


01 背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

二维dp数组01背包

1. 确定dp数组以及下标的含义

        对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

2. 确定递推公式

  再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

  那么可以有两个方向推出来dp[i][j],

    •   不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
    •   放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

  所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

3.dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

def test_2_wei_bag_problem1():
    weight = [1, 3, 4]
    value = [15, 20, 30]
    bagweight = 4

    # 二维数组
    dp = [[0] * (bagweight + 1) for _ in range(len(weight))]

    # 初始化
    for j in range(weight[0], bagweight + 1):
        dp[0][j] = value[0]

    # weight数组的大小就是物品个数
    for i in range(1, len(weight)):  # 遍历物品
        for j in range(bagweight + 1):  # 遍历背包容量
            if j < weight[i]:
                dp[i][j] = dp[i - 1][j]
            else:
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])

    print(dp[len(weight) - 1][bagweight])

test_2_wei_bag_problem1()
def test_2_wei_bag_problem1(weight, value, bagweight):
    # 二维数组
    dp = [[0] * (bagweight + 1) for _ in range(len(weight))]

    # 初始化
    for j in range(weight[0], bagweight + 1):
        dp[0][j] = value[0]

    # weight数组的大小就是物品个数
    for i in range(1, len(weight)):  # 遍历物品
        for j in range(bagweight + 1):  # 遍历背包容量
            if j < weight[i]:
                dp[i][j] = dp[i - 1][j]
            else:
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])

    return dp[len(weight) - 1][bagweight]

if __name__ == "__main__":

    weight = [1, 3, 4]
    value = [15, 20, 30]
    bagweight = 4

    result = test_2_wei_bag_problem1(weight, value, bagweight)
    print(result)

 

一维dp数组(滚动数组)


 

对于背包问题其实状态都是可以压缩的。

在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);

与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。

这就是滚动数组的由来,需要满足的条件是上一层可以重复利用,直接拷贝到当前层。

读到这里估计大家都忘了 dp[i][j]里的i和j表达的是什么了,i是物品,j是背包容量。

dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

动规五部曲分析如下:

  1. 确定dp数组的定义

在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

  1. 一维dp数组的递推公式

dp[j]为 容量为j的背包所背的最大价值,那么如何推导dp[j]呢?

dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。

dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])

此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,

这里大家发现和二维dp的写法中,遍历背包的顺序是不一样的!

二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。

为什么呢?

倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!

举一个例子:物品0的重量weight[0] = 1,价值value[0] = 15

如果正序遍历

dp[1] = dp[1 - weight[0]] + value[0] = 15

dp[2] = dp[2 - weight[0]] + value[0] = 30

此时dp[2]就已经是30了,意味着物品0,被放入了两次,所以不能正序遍历。

为什么倒序遍历,就可以保证物品只放入一次呢?

倒序就是先算dp[2]

dp[2] = dp[2 - weight[0]] + value[0] = 15 (dp数组已经都初始化为0)

dp[1] = dp[1 - weight[0]] + value[0] = 15

所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。

那么问题又来了,为什么二维dp数组历的时候不用倒序呢?

因为对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖!

(如何这里读不懂,大家就要动手试一试了,空想还是不靠谱的,实践出真知!)

再来看看两个嵌套for循环的顺序,代码中是先遍历物品嵌套遍历背包容量,那可不可以先遍历背包容量嵌套遍历物品呢?

不可以!

因为一维dp的写法,背包容量一定是要倒序遍历(原因上面已经讲了),如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。

倒序遍历的原因是,本质上还是一个对二维数组的遍历,并且右下角的值依赖上一层左上角的值,因此需要保证左边的值仍然是上一层的,从右向左覆盖。

(这里如果读不懂,就再回想一下dp[j]的定义,或者就把两个for循环顺序颠倒一下试试!)

所以一维dp数组的背包在遍历顺序上和二维其实是有很大差异的!,这一点大家一定要注意。

def test_1_wei_bag_problem():
    weight = [1, 3, 4]
    value = [15, 20, 30]
    bagWeight = 4

    # 初始化
    dp = [0] * (bagWeight + 1)
    for i in range(len(weight)):  # 遍历物品
        for j in range(bagWeight, weight[i] - 1, -1):  # 遍历背包容量
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i])

    print(dp[bagWeight])


test_1_wei_bag_problem()

 


416. 分割等和子集

只有确定了如下四点,才能把01背包问题套到本题上来。

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。
class Solution:
    def canPartition(self, nums: List[int]) -> bool:
        target = sum(nums)
        if target % 2 == 1:
            return False
        target //= 2
        bag = [0 for _ in range(20002)]
        for i in nums:
            for j in range(target, i-1, -1):
                    bag[j] = max(bag[j], bag[j-i]+i)

        print(bag)
        if bag[target] == target:
            return True
        return False

 


1049.最后一块石头的重量II

两个石头相碰,会消失min(a, b), 所以我们要将其变成两个部分,只要和最相近就行,所以用背包向上一题那样测试离sum/2最近的和

class Solution:
    def lastStoneWeightII(self, stones: List[int]) -> int:
        target = sum(stones)//2
        box = [0 for _ in range(3005)]
        for stone in stones:
            for j in range(target, stone-1, -1):
                box[j] = max(box[j], box[j-stone]+stone)
        return sum(stones)-2*box[target]

 


494.目标和

目标是用+-号将一串数字变为target,问有多少种方式

那我们就定义dp数组的含义是dp[i]组成i有多少种方式

目的是求得(sum-target)//2的和有多少种方式

dp[i] = dp[i]+dp[i-k]

 

class Solution:
    def findTargetSumWays(self, nums: List[int], target: int) -> int:
        sums = sum(nums)-target
        if sums % 2 == 1 or sums < 0:
            return 0
        sums = sums//2
        bag = [0 for _ in range(3005)]
        bag[0] = 1
        for num in nums:
            for j in range(sums, -1, -1):
                if j >= num:
                    bag[j] = bag[j] + bag[j-num]
        return bag[sums]

 


474.一和零

看清题目说的是求最多有多少个字符串,而不是求有多少种组合方式

dp数组的定义:dp[i][j]在可以有i个0和j个1的情况下最多能有多少个字符串

我们的dp方程应该为: dp[i][j] = max(dp[i][j], dp[i-zeros][j-one]+1)

初始化:dp[i][j] = 0

返回值:dp[m][n]

class Solution:
    def findMaxForm(self, strs: List[str], m: int, n: int) -> int:
        nums = [[0 for _ in range(len(strs))] for _ in range(2)]
        for i in range(len(strs)):
            for t in strs[i]:
                if t == "0":
                    nums[0][i] += 1
                else:
                    nums[1][i] += 1
        

        dp = [[0 for _ in range(105)] for _ in range(105)]

        for k in range(len(strs)):
            for i in range(m, -1, -1):
                for j in range(n, -1, -1):
                    if i >= nums[0][k] and j >= nums[1][k]:
                        dp[i][j] = max(dp[i][j], dp[i - nums[0][k]][j - nums[1][k]]+1)
        
        return dp[m][n]
        

 

 

posted on 2023-06-28 10:29  跪求个offer  阅读(64)  评论(0)    收藏  举报
刷新页面返回顶部
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3