[转]PCL 常用小知识 - 采男孩的小蘑菇 - 博客园(转载请删除括号里的内容)
(转载请删除括号里的内容)
时间计算
pcl中计算程序运行时间有很多函数,其中利用控制台的时间计算
首先必须包含头文件 #include <pcl/console/time.h>
|
1
2
3
4
5
6
|
#include <pcl/console/time.h>pcl::console::TicToc time; time.tic();//程序段cout<<time.toc()/1000<<"s"<<endl; |
pcl::PointCloud::Ptr和pcl::PointCloud的两个类相互转换
|
1
2
3
4
5
6
7
8
|
#include <pcl/io/pcd_io.h>#include <pcl/point_types.h>#include <pcl/point_cloud.h> pcl::PointCloud<pcl::PointXYZ>::Ptr cloudPointer(new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ> cloud;cloud = *cloudPointer;cloudPointer = cloud.makeShared(); |
查找点云的x,y,z的极值
|
1
2
3
4
5
6
7
|
#include <pcl/io/pcd_io.h>#include <pcl/point_types.h>#include <pcl/common/common.h><br>pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);pcl::io::loadPCDFile<pcl::PointXYZ> ("your_pcd_file.pcd", *cloud);pcl::PointXYZ minPt, maxPt;pcl::getMinMax3D (*cloud, minPt, maxPt); |
如果知道需要保存点的索引,如何从原点云中拷贝点到新点云?
|
1
2
3
4
5
6
7
8
9
10
|
#include <pcl/io/pcd_io.h>#include <pcl/common/impl/io.hpp>#include <pcl/point_types.h>#include <pcl/point_cloud.h> pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);pcl::io::loadPCDFile<pcl::PointXYZ>("C:\office3-after21111.pcd", *cloud);pcl::PointCloud<pcl::PointXYZ>::Ptr cloudOut(new pcl::PointCloud<pcl::PointXYZ>);std::vector<int > indexs = { 1, 2, 5 };pcl::copyPointCloud(*cloud, indexs, *cloudOut); |
取已知索引之外的点云
|
1
2
3
4
5
6
7
8
9
10
|
pcl::PointIndices::Ptr inliers(new pcl::PointIndices);inliers->indices = pointIdxRadiusSearchMap;//已知索引的indexstd::vector<int> pointIdxRadiusSearchMap;pcl::ExtractIndices<pcl::PointXYZ> extract; extract.setInputCloud(_laser3d_map);extract.setIndices(inliers); extract.setNegative(true); //false: 筛选Index对应的点,true:过滤获取Index之外的点 extract.filter(*map_3d_2); |
如何从点云里删除和添加点?
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
#include <pcl/io/pcd_io.h>#include <pcl/common/impl/io.hpp>#include <pcl/point_types.h>#include <pcl/point_cloud.h> pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);pcl::io::loadPCDFile<pcl::PointXYZ>("C:\office3-after21111.pcd", *cloud);pcl::PointCloud<pcl::PointXYZ>::iterator index = cloud->begin();cloud->erase(index);//删除第一个index = cloud->begin() + 5;cloud->erase(cloud->begin());//删除第5个pcl::PointXYZ point = { 1, 1, 1 };//在索引号为5的位置1上插入一点,原来的点后移一位cloud->insert(cloud->begin() + 5, point);cloud->push_back(point);//从点云最后面插入一点std::cout << cloud->points[5].x;//输出1 |
如果删除的点太多建议用上面的方法拷贝到新点云,再赋值给原点云,如果要添加很多点,建议先resize,然后用循环向点云里的添加。
如何对点云进行全局或局部变换
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
#include <pcl/io/pcd_io.h>#include <pcl/common/impl/io.hpp>#include <pcl/point_types.h>#include <pcl/point_cloud.h>#include <pcl/common/transforms.h>pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);pcl::io::loadPCDFile("path/.pcd",*cloud);//全局变化 //构造变化矩阵Eigen::Matrix4f transform_1 = Eigen::Matrix4f::Identity();float theta = M_PI/4; //旋转的度数,这里是45度transform_1 (0,0) = cos (theta); //这里是绕的Z轴旋转transform_1 (0,1) = -sin(theta);transform_1 (1,0) = sin (theta);transform_1 (1,1) = cos (theta); //transform_1 (0,2) = 0.3; //这样会产生缩放效果//transform_1 (1,2) = 0.6;// transform_1 (2,2) = 1;transform_1 (0,3) = 25; //这里沿X轴平移transform_1 (1,3) = 30;transform_1 (2,3) = 380;pcl::PointCloud<pcl::PointXYZ>::Ptr transform_cloud1 (new pcl::PointCloud<pcl::PointXYZ>);pcl::transformPointCloud(*cloud,*transform_cloud1,transform_1); //不言而喻 |
|
1
|
//第一个参数为输入,第二个参数为输入点云中部分点集索引,第三个为存储对象,第四个是变换矩阵。<br><br>pcl::transformPointCloud(*cloud,pcl::PointIndices indices,*transform_cloud1,matrix); |
链接两个点云字段(两点云大小必须相同)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
|
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);pcl::io::loadPCDFile("/home/yxg/pcl/pcd/mid.pcd",*cloud);pcl::NormalEstimation<pcl::PointXYZ,pcl::Normal> ne;ne.setInputCloud(cloud);pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>());ne.setSearchMethod(tree);pcl::PointCloud<pcl::Normal>::Ptr cloud_normals(new pcl::PointCloud<pcl::Normal>()); ne.setKSearch(8);//ne.setRadisuSearch(0.3);ne.compute(*cloud_normals); pcl::PointCloud<pcl::PointNormal>::Ptr cloud_with_nomal (new pcl::PointCloud<pcl::PointNormal>);pcl::concatenateFields(*cloud,*cloud_normals,*cloud_with_nomal); |
删除无效点
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
#include <pcl/point_cloud.h>#include <pcl/point_types.h>#include <pcl/filters/filter.h>#include <pcl/io/pcd_io.h> using namespace std;typedef pcl::PointXYZRGBA point;typedef pcl::PointCloud<point> CloudType; int main (int argc,char **argv){ CloudType::Ptr cloud (new CloudType); CloudType::Ptr output (new CloudType); pcl::io::loadPCDFile(argv[1],*cloud); cout<<"size is:"<<cloud->size()<<endl; vector<int> indices; pcl::removeNaNFromPointCloud(*cloud,*output,indices); cout<<"output size:"<<output->size()<<endl; pcl::io::savePCDFile("out.pcd",*output); return 0;} |
xyzrgb格式转换为xyz格式的点云
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
#include <pcl/io/pcd_io.h>#include <ctime>#include <Eigen/Core>#include <pcl/point_types.h>#include <pcl/point_cloud.h>using namespace std;typedef pcl::PointXYZ point;typedef pcl::PointXYZRGBA pointcolor;int main(int argc,char **argv){ pcl::PointCloud<pointcolor>::Ptr input (new pcl::PointCloud<pointcolor>); pcl::io::loadPCDFile(argv[1],*input); pcl::PointCloud<point>::Ptr output (new pcl::PointCloud<point>); int M = input->points.size(); cout<<"input size is:"<<M<<endl; for (int i = 0;i <M;i++) { point p; p.x = input->points[i].x; p.y = input->points[i].y; p.z = input->points[i].z; output->points.push_back(p); } output->width = 1; output->height = M; cout<< "size is"<<output->size()<<endl; pcl::io::savePCDFile("output.pcd",*output);} |
flann kdtree 查询k近邻
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
//平均密度计算pcl::KdTreeFLANN<pcl::PointXYZ> kdtree; //创建一个快速k近邻查询,查询的时候若该点在点云中,则第一个近邻点是其本身kdtree.setInputCloud(cloud);int k =2;float everagedistance =0;for (int i =0; i < cloud->size()/2;i++){ vector<int> nnh ; vector<float> squaredistance; //pcl::PointXYZ p; //p = cloud->points[i]; kdtree.nearestKSearch(cloud->points[i],k,nnh,squaredistance); everagedistance += sqrt(squaredistance[1]); //cout<<everagedistance<<endl;}everagedistance = everagedistance/(cloud->size()/2);cout<<"everage distance is : "<<everagedistance<<endl; |
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
#include <pcl/kdtree/kdtree_flann.h>pcl::KdTreeFLANN<pcl::PointXYZ> kdtree; //创建KDtreekdtree.setInputCloud (in_cloud);pcl::PointXYZ searchPoint; //创建目标点,(搜索该点的近邻)searchPoint.x = 1;searchPoint.y = 2;searchPoint.z = 3;//查询近邻点的个数 int k = 10; //近邻点的个数std::vector<int> pointIdxNKNSearch(k); //存储近邻点集的索引std::vector<float>pointNKNSquareDistance(k); //近邻点集的距离 if (kdtree.nearestKSearch(searchPoint,k,pointIdxNKNSearch,pointNKNSquareDistance)>0){ for (size_t i = 0; i < pointIdxNKNSearch.size (); ++i) std::cout << " " << in_cloud->points[ pointIdxNKNSearch[i] ].x << " " << in_cloud->points[ pointIdxNKNSearch[i] ].y << " " <<in_cloud->points[ pointIdxNKNSearch[i] ].z << " (squared distance: " <<pointNKNSquareDistance[i] << ")<<std::endl;}//半径为r的近邻点float radius = 40.0f; //其实是求的40*40距离范围内的点std::vector<int> pointIdxRadiusSearch; //存储的对应的平方距离std::vector<float> a;if ( kdtree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, a) > 0 ){ for (size_t i = 0; i < pointIdxRadiusSearch.size (); ++i) std::cout << " " << in_cloud->points[ pointIdxRadiusSearch[i] ].x << " " <<in_cloud->points[ pointIdxRadiusSearch[i] ].y << " " << in_cloud->points[ pointIdxRadiusSearch[i] ].z << " (squared distance: " <<a[i] << ")" << std::endl;} |
关于ply文件
后缀命名为.ply格式文件,常用的点云数据文件。ply文件不仅可以存储点数据,而且可以存储网格数据. 用emacs打开一个ply文件,观察表头,如果表头element face的值为0,则表示该文件为点云文件,如果element face的值为某一正整数N,则表示该文件为网格文件,且包含N个网格.所以利用pcl读取 ply 文件,不能一味用pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PintT>)来读取。在读取ply文件时候,首先要分清该文件是点云还是网格类文件。如果是点云文件,则按照一般的点云类去读取即可,官网例子,就是这样。如果ply文件是网格类,则需要
|
1
2
3
|
pcl::PolygonMesh mesh;pcl::io::loadPLYFile(argv[1],mesh);pcl::io::savePLYFile("result.ply", mesh); |
读取。(官网例子之所以能成功,是因为它对模型进行了细分处理,使得网格变成了点)
计算点的索引
例如sift算法中,pcl无法直接提供索引(主要原因是sift点是通过计算出来的,在某些不同参数下,sift点可能并非源数据中的点,而是某些点的近似),若要获取索引,则可利用以下函数:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
void getIndices (pointcloud::Ptr cloudin, pointcloud keypoints, pcl::PointIndices::Ptr indices){ pcl::KdTreeFLANN<pcl::PointXYZ> kdtree; kdtree.setInputCloud(cloudin); std::vector<float>pointNKNSquareDistance; //近邻点集的距离 std::vector<int> pointIdxNKNSearch; for (size_t i =0; i < keypoints.size();i++) { kdtree.nearestKSearch(keypoints.points[i],1,pointIdxNKNSearch,pointNKNSquareDistance); // cout<<"the distance is:"<<pointNKNSquareDistance[0]<<endl; // cout<<"the indieces is:"<<pointIdxNKNSearch[0]<<endl; indices->indices.push_back(pointIdxNKNSearch[0]); }} |
其思想就是:将原始数据插入到flann的kdtree中,寻找keypoints的最近邻,如果距离等于0,则说明是同一点,提取索引即可.
计算质心
|
1
2
|
Eigen::Vector4f centroid; //质心pcl::compute3DCentroid(*cloud_smoothed,centroid); //估计质心的坐标 |
从网格提取顶点(将网格转化为点)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
#include <pcl/io/io.h>#include <pcl/io/pcd_io.h>#include <pcl/io/obj_io.h>#include <pcl/PolygonMesh.h>#include <pcl/point_cloud.h>#include <pcl/io/vtk_lib_io.h>//loadPolygonFileOBJ所属头文件;#include <pcl/io/vtk_io.h>#include <pcl/io/ply_io.h>#include <pcl/point_types.h>using namespace pcl;<br>int main(int argc,char **argv){ pcl::PolygonMesh mesh; //pcl::io::loadPolygonFileOBJ(argv[1], mesh); pcl::io::loadPLYFile(argv[1],mesh); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::fromPCLPointCloud2(mesh.cloud, *cloud); pcl::io::savePCDFileASCII("result.pcd", *cloud);return 0;} |
以上代码可以从.obj或.ply面片格式转化为点云类型。
---------------------
作者:采男孩的小蘑菇
来源:CNBLOGS
原文:https://www.cnblogs.com/flyinggod/p/9478000.html
版权声明:本文为作者原创文章,转载请附上博文链接!
内容解析By:CSDN,CNBLOG博客文章一键转载插件

浙公网安备 33010602011771号