题目一
题文
今有椭圆 \(\Gamma: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, (a > b > 0)\) 点 \(A, B \in \Gamma\) 并且 \(OA \bot OB\),求 \(O\) 到 \(AB\) 的射影 \(H\) 的轨迹方程。
解法一
考虑设
\[OA: y=kx, OB: y=-\frac{x}{k}
\]
先考察斜率存在的情形。联立 \(OA, \Gamma\) 得
\[\begin{cases}
\Gamma :& b^2 x^2 + a^2 y^2 - a^2 b^2 = 0\\
OA :& y = kx
\end{cases} \implies x_1^2 = \frac{a^2 b^2}{b^2 + a^2k^2}
\]
联立 \(OB, \Gamma\) 得
\[\begin{cases}
\Gamma :& b^2 x^2 + a^2 y^2 - a^2 b^2 = 0 \\
OB :& y = -\frac{x}{k}
\end{cases} \implies x_2^2 = \frac{a^2 b^2}{b^2 + \frac{a^2}{k^2}}
\]
即
\[OA^2 = \frac{(k^2 + 1) a^2 b^2}{b^2 + a^2k^2}
\]
\[OB^2 = \frac{(\frac{1}{k^2} + 1) a^2 b^2}{b^2 + \frac{a^2}{k^2}}
\]
根据面积关系
\[2S = OA \cdot OB = OH \cdot AB \implies OH^2 = \frac{OA^2 OB^2}{AB^2} = \frac{OA^2 OB^2}{OA^2 + OB^2}
\]
我们得到
\[\begin{equation*}
\begin{split}
\frac{1}{OH^2} &= \frac{1}{OA^2} + \frac{1}{OB^2}\\
&=\frac{b^2 + a^2 k^2}{(k^2 + 1) a^2 b^2} + \frac{b^2 + \frac{a^2}{k^2}}{(\frac{1}{k^2} + 1) a^2 b^2}\\
&=\frac{b^2 + a^2 k^2}{(k^2 + 1) a^2 b^2} + \frac{k^2 b^2 + a^2}{(k^2 + 1) a^2 b^2} = \frac{(k^2 + 1)(a^2 + b^2)}{(k^2 + 1)a^2 b^2} = \frac{a^2 + b^2}{a^2 b^2}
\end{split}
\end{equation*}
\]
即
\[OH^2 = \frac{a^2 b^2}{a^2 + b^2}
\]
再考察斜率不存在的情形(略)。容易发现点 \(H\) 的轨迹方程为
\[x^2 + y^2 = \frac{a^2 b^2}{a^2 + b^2}
\]
解法二
解法一的代数运算比较复杂。我们考虑用别的东西代替斜率。
设
\[OA = r_1, OB = r_2
\]
则
\[\begin{equation*}
\begin{split}
\mathbf{OA}&=(r_1 \sin \alpha, r_1 \cos \alpha)\\
\mathbf{OB}&=\left(r_2 \sin (\alpha + \frac{\pi}{2}), r_2 \cos (\alpha + \frac{\pi}{2})\right) = (-r_2 \cos \alpha, r_2 \sin \alpha)\\
\end{split}
\end{equation*}
\]
将 \(A, B\) 坐标代入 \(\Gamma\) 得到
\[\begin{cases}
\displaystyle\frac{r_1^2 \sin^2 \alpha}{a^2} + \frac{r_1^2 \cos^2 \alpha}{b^2} = 1\\
\displaystyle\frac{r_2^2 \cos^2 \alpha}{a^2} + \frac{r_2^2 \sin^2 \alpha}{b^2} = 1
\end{cases}
\]
即
\[\begin{cases}
\displaystyle\frac{\sin^2 \alpha}{a^2} + \frac{\cos^2 \alpha}{b^2} = \frac{1}{r_1^2}\\
\displaystyle\frac{\cos^2 \alpha}{a^2} + \frac{\sin^2 \alpha}{b^2} = \frac{1}{r_2^2}
\end{cases}
\]
两式相加,得到
\[\frac{\sin^2 \alpha + \cos^2 \alpha}{a^2} + \frac{\sin^2 \alpha + \cos^2 \alpha}{b^2} = \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{r^2_1} + \frac{1}{r^2_2}
\]
而由面积关系
\[\frac{1}{OH^2} = \frac{1}{OA^2} + \frac{1}{OB^2} = \frac{1}{r_1^2} + \frac{1}{r_2^2} = \frac{1}{a^2} + \frac{1}{b^2}\\
\implies OH^2 = \frac{a^2 b^2}{a^2 + b^2} \implies x^2 + y^2 = \frac{a^2 b^2}{a^2 + b^2}
\]
题目二
题文
今有抛物线 \(W: y = x^2 + \frac{1}{4}\),又矩形 \(ABCD\) 恰有三个顶点在 \(W\) 上,证明 \(C_{ABCD} > 3 \sqrt{3}\)。
解法一
注意到 \(AB, BC\) 的斜率必然存在,否则其中一条与 \(W\) 仅有一个交点。
设
\[A(x_1, y_1), B(x_0, y_0), C(x_2, y_2)
\]
则
\[\begin{equation*}
\begin{split}
BA&: y = k(x - x_0) + x_0^2 + \frac{1}{4}\\
BC&: y = -\frac{1}{k}(x - x_0) + x_0^2 + \frac{1}{4}
\end{split}
\end{equation*}
\]
令 \(k \ge 0\)。联立 \(BA\) 与 \(W\) 得
\[\begin{cases}
W:& y = x^2 + \frac{1}{4}\\
BA:& y = k(x - x_0) + x_0^2 + \frac{1}{4}
\end{cases}
\implies x^2 - kx + kx_0 - x_0^2 = 0
\]
方程有根 \(x_0, x_1\),由韦达定理得
\[x_0 + x_1 = k
\]
联立 \(BC\) 与 \(W\) 得
\[\begin{cases}
W:& y = x^2 + \frac{1}{4}\\
BC:& y = -\frac{1}{k}(x - x_0) + x_0^2 + \frac{1}{4}
\end{cases}
\implies x^2 + \frac{x}{k} - \frac{x_0}{k} - x_0^2 = 0
\]
方程有根 \(x_0, x_2\),由韦达定理得
\[x_0 + x_2 = -\frac{1}{k}
\]
由 \(x_0, x_1, x_2\),矩形 \(ABCD\) 的周长
\[\begin{align*}
C_{ABCD} &= 2\left(BA + BC\right) \\
&= 2 \sqrt{k^2 + 1} \cdot \left | x_1 - x_0 \right | + 2 \sqrt{\frac{1}{k^2} + 1} \cdot \left | x_2 - x_0 \right |\\
&= 2 \sqrt{k^2 + 1} \cdot \left | k - 2x_0 \right | + 2 \sqrt{\frac{1}{k^2} + 1} \cdot \left |-\frac{1}{k} - 2x_0 \right |\\
&= 2 \sqrt{k^2 + 1} \left( \left | 2x_0 - k \right | + \left | \frac{2}{k} x_0 + \frac{1}{k^2} \right | \right)
\end{align*}
\]
由绝对值函数的性质,将 \(x_0\) 看作主元,最小值取到,当且仅当 \(x_0 = \frac{k}{2}\) 或 \(x_0 = -\frac{1}{2k}\)。即
\[\left(C_{ABCD}\right)_{\min} = \min\left\{ 2 \sqrt{k^2 + 1} \left | 1 + \frac{1}{k^2}\right |, 2 \sqrt{k^2 + 1} \left | k + \frac{1}{k} \right | \right\}
\]
记函数
\[f(k) = 2\sqrt{k^2 + 1} \left | 1 + \frac{1}{k^2} \right |
\]
即
\[(C_{ABCD})_{\min} = \min \left \{ f\left(k\right), f\left(\frac{1}{k}\right) \right \}
\]
以 \(\frac{1}{k'}\) 代 \(k\),发现 \(f(k) = f(\frac{1}{k'})\),则只须求 \(\min f(\frac{1}{k})\)。
注意到
\[\begin{equation*}
\begin{split}
f(\frac{1}{k}) &= 2 \sqrt{k^2 + 1} \cdot \frac{k^2 + 1}{k}\\
&= \frac{2(k^2 + 1)^{\frac{3}{2}}}{k} = \frac{2}{k} \left( k^2 + \frac{1}{2} + \frac{1}{2}\right)^{\frac{3}{2}}\\
&\ge \frac{2}{k} \left[ 3 \cdot \left( k^2 \cdot \frac{1}{2} \cdot \frac{1}{2} \right) ^{\frac{1}{3}} \right]^{\frac{3}{2}} = \frac{2 \cdot \frac{1}{2} \cdot 3^{\frac{3}{2}} \cdot k}{k} = 3\sqrt{3}
\end{split}
\end{equation*}
\]
取等当且仅当 \(k^2 = \frac{1}{2}\),即 \(k = \frac{\sqrt{2}}{2}\),但此时 \(x_0 = x_2 = -\frac{\sqrt{2}}{2}\),故取不到等号。证毕。
解法二
设
\[\begin{align*}
\mathbf{BA} &= (r_1 \sin \alpha, r_1, \cos \alpha)\\
\mathbf{BC} &= (-r_2 \cos \alpha, r_2 \sin \alpha)\\
\mathbf{OB} &= (x_0, x_0^2 + \frac{1}{4})
\end{align*}
\]
则
\[\begin{align*}
\mathbf{OA} &= \mathbf{OB} + \mathbf{BA}\\
&= (x_0 + r_1 \sin \alpha, x_0^2 + \frac{1}{4} + r_1 \cos \alpha)\\
\mathbf{OC} &= \mathbf{OB} + \mathbf{BC}\\
&= (x_0 - r_2 \cos \alpha, x_0^2 + \frac{1}{4} + r_2 \sin \alpha)
\end{align*}
\]
将 \(A, C\) 坐标代入 \(W\) 得
\[\begin{cases}
x_0^2 + \frac{1}{4} + r_1 \cos \alpha = (x_0 + r_1 \sin \alpha)^2 + \frac{1}{4}\\
x_0^2 + \frac{1}{4} + r_2 \sin \alpha = (x_0 - r_2 \cos \alpha)^2 + \frac{1}{4}
\end{cases}
\implies
\begin{cases}
\cos \alpha = 2 x_0 \sin \alpha + r_1 \sin^2 \alpha\\
\sin \alpha = - 2 x_0 \cos \alpha + r_2 \cos^2 \alpha
\end{cases}
\]
整理得
\[\begin{cases}
\cos^2 \alpha = 2 x_0 \sin \alpha \cos \alpha + r_1 \sin^2 \alpha \cos \alpha\\
\sin^2 \alpha = - 2 x_0 \cos \alpha \sin \alpha + r_2 \cos^2 \alpha \sin \alpha
\end{cases}
\]
即
\[r_1 \sin^2 \alpha \cos \alpha + r_2 \cos^2 \alpha \sin \alpha = \sin^2 \alpha + \cos^2 \alpha = 1
\]
不失一般性,设 \(\alpha \in \left[0, \frac{\pi}{2} \right)\)。再对其分类如下:
构造函数
\[\begin{align*}
g(x) &= x - x^3, x \in \left[ 0, \frac{\sqrt{2}}{2} \right]\\
\end{align*}
\]
其导函数 \(g'(x) = 1 - 3x^2\),则在 \(\left[0, \frac{\sqrt{3}}{3}\right]\) 上 \(g(x)\) 递增,在 \(\left[ \frac{\sqrt{3}}{3}, \frac{\sqrt{2}}{2} \right]\) 上 \(g(x)\) 递减。
即 \(r_1 + r_2\) 在 \(\cos \alpha = \frac{\sqrt{3}}{3}\) 时取得最小值 \(\frac{3 \sqrt{3}}{2}\)。由于 \(\sin \alpha \neq \cos \alpha\),则等号取不到。
综上所述,\(C_{ABCD} = 2 \left(r_1 + r_2\right) > 3 \sqrt{3}\)。