LeetCode221 maximal-square(最大正方形)
题目
Given an m x n binary matrix filled with 0's and 1's, find the largest square containing only 1's and return its area.
Example 1:
Input: matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1",
"1"],["1","0","0","1","0"]]
Output: 4
Example 2:
Input: matrix = [["0","1"],["1","0"]]
Output: 1
Example 3:
Input: matrix = [["0"]]
Output: 0
Constraints:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 300
matrix[i][j] is '0' or '1'.
方法
暴力法
遍历矩阵,以遍历的当前点作为矩阵的左上角,往下找为1的矩阵大小
- 时间复杂度:O()
- 空间复杂度:O()
动态规划法
dp[i][j]记录的是以[i,j]坐标为右下角的最大的正方形边长,则[i,j]坐标下的值为它的上方、左上方,左边三点的最小值
- 时间复杂度:O(m*n),m和n分别是矩阵的长和宽
- 空间复杂度:O(m*n)
class Solution {
public int maximalSquare(char[][] matrix) {
int row = matrix.length, col = matrix[0].length;
int maxSide = 0;
int[][] dp = new int[row][col];
for(int i=0;i<row;i++){
for(int j=0;j<col;j++){
if(matrix[i][j]=='1'){
if(i==0||j==0){
dp[i][j] = 1;
}else{
dp[i][j] = Math.min(Math.min(dp[i-1][j-1],dp[i][j-1]),dp[i-1][j])+1;
}
maxSide = Math.max(maxSide,dp[i][j]);
}
}
}
return maxSide*maxSide;
}
}