DataFrame的级联and合并操作

DataFrame的级联and合并操作

级联操作(横向或纵向的拼接)

  • pd.concat

  • pd.append

import pandas as pd
import numpy as np

 

pandas使用pd.concat函数,与np.concatenate函数类似,只是多了一些参数:

objs
axis=0
keys
join='outer' / 'inner':表示的是级联的方式,outer会将所有的项进行级联(忽略匹配和不匹配),而inner只会将匹配的项级联到一起,不匹配的不级联
ignore_index=False

 

  • 匹配级联

df1 = pd.DataFrame(data=np.random.randint(0,100,size=(5,3)),columns=['A','B','C'])
df2 = pd.DataFrame(data=np.random.randint(0,100,size=(5,3)),columns=['A','D','C'])
pd.concat((df1,df1),axis=1) #行列索引都一致的级联叫做匹配级联
​
    A   B   C   A   B   C
0   26  63  95  26  63  95
1   66  86  35  66  86  35
2   74  3   4   74  3   4
3   85  0   67  85  0   67
4   59  28  65  59  28  65
View Code

 

  • 不匹配级联

    • 不匹配指的是级联的维度的索引不一致。例如纵向级联时列索引不一致,横向级联时行索引不一致

    • 有2种连接方式:

      • 外连接:补NaN(默认模式)

      • 内连接:只连接匹配的项

pd.concat((df1,df2),axis=0) # 默认
​
pd.concat((df1,df2),axis=0,join='inner') # 内 inner直把可以级联的级联,不能级联不处理(默认是outer保留所有值)

 

  • 如果想要保留数据的完整性必须使用outer(外连接)

  • append函数的使用

df1.append(df1)

 

合并操作(合并对应的是数据,级联对应的是表格)

  • merge与concat的区别在于,merge需要依据某一共同列来进行合并

  • 使用pd.merge()合并时,会自动根据两者相同column名称的那一列,作为key来进行合并。

  • 注意每一列元素的顺序不要求一致

一对一合并

from pandas import DataFrame
df1 = DataFrame({'employee':['Bob','Jake','Lisa'],
                'group':['Accounting','Engineering','Engineering'],
                })
df1
​
    employee    group
0   Bob     Accounting
1   Jake    Engineering
2   Lisa    Engineering
View Code

 

df2 = DataFrame({'employee':['Lisa','Bob','Jake'],
                'hire_date':[2004,2008,2012],
                })
df2
​
   employee hire_date
0   Lisa    2004
1   Bob     2008
2   Jake    2012
View Code
pd.merge(df1,df2,on='employee') # 合并
​
   employee      group  hire_date
0   Bob     Accounting  2008
1   Jake    Engineering 2012
2   Lisa    Engineering 2004
View Code

 

一对多合并

df3 = DataFrame({
    'employee':['Lisa','Jake'],
    'group':['Accounting','Engineering'],
    'hire_date':[2004,2016]})
df3
​
employee    group   hire_date
0   Lisa    Accounting  2004
1   Jake    Engineering 2016
View Code
df4 = DataFrame({'group':['Accounting','Engineering','Engineering'],
                       'supervisor':['Carly','Guido','Steve']
                })
df4
​
       group    supervisor
0   Accounting  Carly
1   Engineering Guido
2   Engineering Steve
View Code
pd.merge(df3,df4)#on如果不写,默认情况下使用两表中公有的列作为合并条件
employee    group   hire_date   supervisor
0   Lisa    Accounting  2004    Carly
1   Jake    Engineering 2016    Guido
2   Jake    Engineering 2016    Steve
View Code
 

多对多合并

df1 = DataFrame({'employee':['Bob','Jake','Lisa'],
                 'group':['Accounting','Engineering','Engineering']})
df1
    employee    group
0   Bob     Accounting
1   Jake    Engineering
2   Lisa    Engineering
View Code
df5 = DataFrame({'group':['Engineering','Engineering','HR'],
                'supervisor':['Carly','Guido','Steve']
                })
df5
       group    supervisor
0   Engineering Carly
1   Engineering Guido
2   HR          Steve
View Code

 

pd.merge(df1,df5,how='outer') # how='outer'合并方式 左右内外连接
    employee    group   supervisor
0   Bob     Accounting  NaN
1   Jake    Engineering Carly
2   Jake    Engineering Guido
3   Lisa    Engineering Carly
4   Lisa    Engineering Guido
5   NaN HR  Steve
View Code

 

pd.merge(df1,df5,how='right')
​
    employee    group   supervisor
0   Jake    Engineering Carly
1   Lisa    Engineering Carly
2   Jake    Engineering Guido
3   Lisa    Engineering Guido
4   NaN HR  Steve
View Code

 

key的规范化

  • 当两张表没有可进行连接的列时,可使用left_on和right_on手动指定merge中左右两边的哪一列列作为连接的列

df1 = DataFrame({'employee':['Bobs','Linda','Bill'],
                'group':['Accounting','Product','Marketing'],
               'hire_date':[1998,2017,2018]})
df1
​
    employee    group   hire_date
0   Bobs    Accounting  1998
1   Linda   Product     2017
2   Bill    Marketing   2018
View Code

 

df5 = DataFrame({'name':['Lisa','Bobs','Bill'],
                'hire_dates':[1998,2016,2007]})
df5
    name    hire_dates
0   Lisa    1998
1   Bobs    2016
2   Bill    2007
View Code

 

pd.merge(df1,df5,left_on='employee',right_on='name')
    employee    group   hire_date   name    hire_dates
0   Bobs    Accounting  1998    Bobs    2016
1   Bill    Marketing   2018    Bill    2007
View Code

 

内合并与外合并:outer取并集 inner取交集(上面做过了)

df6 = DataFrame({'name':['Peter','Paul','Mary'],
               'food':['fish','beans','bread']}
               )
df7 = DataFrame({'name':['Mary','Joseph'],
                'drink':['wine','beer']})
​
pd.concat((df6,df7),axis=0,join='inner')
​
name
0   Peter
1   Paul
2   Mary
0   Mary
1   Joseph
View Code

 

pd.concat((df6,df7),axis=0,join='outer')
​
name    food    drink
0   Peter   fish    NaN
1   Paul    beans   NaN
2   Mary    bread   NaN
0   Mary    NaN wine
1   Joseph  NaN beer
View Code

 

 
posted @ 2022-11-26 18:21  贰号猿  阅读(111)  评论(0)    收藏  举报