LIC-fusion 详细推导
本文写于2021年6月8日
背景
阅读LIC-fusion论文的过程中的一些公式的推导。
State Vector
\[x = [x_I^\top, x_{\text{calib\_C}}^\top, x_{\text{calib\_L}}^\top, x_C^\top, x_L^\top]
\]
where
\[\begin{aligned}
x_{I} &= [^{I_{k}}_G \overline{q}^\top,b_{g}^\top,^G v_{I_{k}}^\top,b_{a}^\top,^Gp_{I_{k}}^\top] \\
x_C &= [^{I_{a_{1}}}_G\overline{q}^\top, ^Gp_{I_{a_{1}}}^\top \cdots ^{I_{a_{m}}}_G\overline{q}^\top, ^Gp_{I_{a_{m}}}^\top] \\
x_L &= [^{I_{b_{1}}}_G\overline{q}^\top, ^Gp_{I_{b_{1}}}^\top \cdots ^{I_{b_{n}}}_G\overline{q}^\top, ^Gp_{I_{b_{n}}}^\top] \\
\end{aligned}
\]
注意到,在LIC Fusion的状态向量的定义中,相机与激光雷达的状态不再是相机与激光雷达的旋转与平移,而是其自身时间戳下的IMU的旋转与平移。
State Propagation
以新来一帧激光雷达的数据为例:
New cloned LiDAR state estimate:
\[\hat{x}_{L_k}(\hat{t}_{I_k}) = [^{I_k}_G \hat{\overline{q}}(\hat{t}_{I_K})^\top, ^G\hat{p}_{I_k}(\hat{t}_{I_k})^\top]
\]
The augmented covariance matrix is:
\[\begin{bmatrix} P(\hat{t}_{I_{k}}) && P(\hat{t}_{I_{k}})J_{I_{k}}(\hat{t}_{I_{k}})^\top \\
J_{I_{k}}(\hat{t}_{I_{k}})P(\hat{t}_{I_{k}}) && J_{I_{k}}(\hat{t}_{I_{k}})P(\hat{t}_{I_{k}})J_{I_{k}}(\hat{t}_{I_{k}})^\top)
\end{bmatrix}
\]
where \(J_{I_{k}}(\hat{t}_{I_{k}})\) is the jacobian of the new cloned \(\hat{x}_{L_{k}}(\hat{t}_{I_{k}})\) with respect to the current state.
\[J_{I_{k}} (\hat{t}_{I_{k}}) = \frac{\partial \delta x_{L_{k}} (\hat{t}_{I_{k}})}{\partial \delta x} =[J_I, J_{\text{calib\_C}}, J_{\text{calib\_L}}, J_{C}, J_L]
\]
derivation of \(J_I\)
因为Lidar的state vector就是自身时间戳的IMU的位姿,显然有:
\[J_{I} = \begin{bmatrix} I_{3\times3} && 0_{3\times 9} && 0_{3\times 3} \\
0_{3\times 3} && 0_{3\times_9} && I_{3\times 3}
\end{bmatrix}
\]
derivation of \(J_{\text{calib\_C}}\),\(J_C\),\(J_L\)
Lidar 的state vector相对于相机的外参以及其他时刻的相机与雷达的state无关,故都设为0。
derivation of \(J_{\text{calib\_L}}\)
\[\begin{aligned}
^{I_{k}}_{G}R(t_{I_{k}} + \tilde{t}_{dL})&= \exp ([\hat\omega_{t_{I_{k}}} \tilde{t}_{dL}]_\times)R(t_{I_{k}}) \\
\implies \exp ([\delta \theta]_\times)^{I_{k}}_{G}R(t_{I_{k}}) &= \exp ([\hat\omega_{t_{I_{k}}} \tilde{t}_{dL}]_\times)R(t_{I_{k}}) \\
\implies \delta \theta &= \hat\omega_{t_{I_{k}}} \tilde{t}_{dL} \\
\implies \frac{\partial \delta \theta}{\partial \tilde{t}_{dL}} &= \hat\omega_{t_{I_{k}}} \\
\end{aligned}
\]
\[\begin{aligned}
p(t_{L} + \hat{t}_{dL} + \tilde{t}_{dL}) &= p(t_{L} + \hat{t}_{dL}) +\hat{v}({t_L+\hat{t}_{dL}})\tilde{t}_{dL} \\
\implies \hat{p} + \tilde{p} &= \hat{p} + \hat{v}({t_L+\hat{t}_{dL}})\tilde{t}_{dL} \\
\implies \tilde{p} &= \hat{v}({t_L+\hat{t}_{dL}})\tilde{t}_{dL}\\
\implies \frac{\partial \tilde{p}}{\partial \tilde{t}_{dL}} &= \hat{v}_{t_{I_{k}}}\\
\end{aligned}
\]
Measurement Models
r的左半部分
引子
参照Jianhao Jiao在"Greedy-Based Feature Selection for Efficient LiDAR SLAM"的补充材料中提到的证明方法,首先给出两个公式\(r\times s = [r]_\times s\)以及
\[\frac{\partial }{\partial x} \|x\| = \frac{x}{\|x\|}
\]
Let
\[y = \| (p' - p_1)\times (p' - p_2)\|
\]
then
\[\begin{aligned}
\frac{\partial r_e}{\partial t_K} &= \frac{\partial r_{e}}{\partial y} \frac{\partial y}{\partial p'}\frac{\partial p'}{\partial t_{K}} \\
\end{aligned}
\]
where
\[\begin{aligned}
\frac{\partial r_{e}}{\partial y} &= \frac{1}{\|p_1-p_2\|} \\
\frac{\partial y}{\partial p'} &= \frac{\partial y}{\partial ((p' - p_1)\times (p' - p_2))} \frac{\partial ((p' - p_1)\times (p' - p_2))}{\partial p'} \\
&= \frac{((p' - p_1)\times (p' - p_2))}{\|((p' - p_1)\times (p' - p_2))\|} [p_2-p_1]_\times\\
\frac{\partial p'}{\partial t_{K}} &= I \\
\end{aligned}
\]
therefore,
\[\frac{\partial r_{e}}{\partial t_{K}} = \frac{1}{\|p_1-p_2\|} \frac{((p' - p_1)\times (p' - p_2))}{\|((p' - p_1)\times (p' - p_2))\|} [p_2-p_1]_\times
\]
那么在LIC-fusion中:
令
\[y = \| (^{L_{l}}p_{fi} - ^{L_{l}}p_{fj})\times (^{L_{l}}p_{fi} - ^{L_{l}}p_{fk})\|_2
\]
则有
\[\begin{aligned}
\frac{\partial \delta r(^L_{l+1}p_{f_{i}})}{\partial ^{L_l} \delta p_{f_{i}}} &= \frac{\partial r(^{L_{l+1}}p_{f_i})}{\partial ^{L_l}p_{f_{i}}} = \frac{\partial r(^{L_{l+1}}p_{f_i})}{\partial y}\frac{\partial y}{\partial ^{L_l}p_{f_{i}}}
\end{aligned}
\]
并且
\[\begin{aligned}
\frac{\partial r(^{L_{l+1}}p_{f_i})}{\partial y} &= \frac{1}{ \|^{L_{l}}p_{fk} - ^{L_{l}}p_{fj}\|_2} \\
\frac{\partial y}{\partial ^{L_l}p_{f_{i}}} &= \frac{ (^{L_{l}}p_{fi} - ^{L_{l}}p_{fj})\times (^{L_{l}}p_{fi} - ^{L_{l}}p_{fk})
}{\| (^{L_{l}}p_{fi} - ^{L_{l}}p_{fj})\times (^{L_{l}}p_{fi} - ^{L_{l}}p_{fk})\|_2
} [^{L_{l}}p_{fk} - ^{L_{l}}p_{fj})]_\times
\end{aligned}
\]
所以
\[\frac{\partial \delta r(^L_{l+1}p_{f_{i}})}{\partial ^{L_l} \delta p_{f_{i}}} = \frac{1}{ \|^{L_{l}}p_{fk} - ^{L_{l}}p_{fj}\|_2} \frac{ (^{L_{l}}p_{fi} - ^{L_{l}}p_{fj})\times (^{L_{l}}p_{fi} - ^{L_{l}}p_{fk})
}{\| (^{L_{l}}p_{fi} - ^{L_{l}}p_{fj})\times (^{L_{l}}p_{fi} - ^{L_{l}}p_{fk})\|_2
} [^{L_{l}}p_{fk} - ^{L_{l}}p_{fj})]_\times
\]
r的右半边
首先给出关系式
\[\begin{aligned}
^{L_{l}}p_{f_{i}} &= ^{L_{l}}_GR (\ ^{G}_{I_{l+1}}R\ ^{I}_{L}R\ ^{L_{l+1}}p_{f_{i}} +^Gp_{L_{l+1}} - ^Gp_{L_{l}}) \\
\end{aligned}
\]
然后有
\[\begin{aligned}
^Gp_{L_{l+1}} &= ^{G}_{I_{l+1}}R \ ^Ip_{L} + ^Gp_{I_{l+1}} \\
&= ^{G}_{I_{l+1}}R (- ^{I}_{L}R ^Lp_I) + ^Gp_{I_{l+1}} \\
&= -^{G}_{L_{l+1}}R\ ^Lp_{I} + ^Gp_{I_{l+1}}\\
^Gp_{L_{l}} &= ^{G}_{I_{l}}R \ ^Ip_{L} + ^Gp_{I_l} \\
&= -^{G}_{L_{l}}R\ ^Lp_{I} + ^Gp_{I_{l}}\\
^{L_{l}}_{G}R &=\ ^{L}_{I} R \ ^{I_{l}}_GR \\
\end{aligned}
\]
带入,有
\[\begin{aligned}
^{L_{l}}p_{f_{i}} &= \ ^{L}_{I} R \ ^{I_{l}}_GR (\ ^{G}_{I_{l+1}}R\ ^{I}_{L}R\ ^{L_{l+1}}p_{fi} -^{G}_{L_{l+1}}R\ ^Lp_{I} + ^Gp_{I_{l+1}}-(-^{G}_{L_{l}}R\ ^Lp_{I} + ^Gp_{I_{l}})) \\
&= \ ^{L}_{I} R \ ^{I_{l}}_GR \ ^{G}_{I_{l+1}}R\ ^{I}_{L}R\ ^{L_{l+1}}p_{fi} - \ ^{L}_{I} R \ ^{I_{l}}_GR ^{G}_{I_{l+1}}R\ ^{I}_{L}R\ ^Lp_{I} + \ ^{L}_{I} R \ ^{I_{l}}_GR ^Gp_{I_{l+1}} + ^Lp_{I} - \ ^{L}_{I} R \ ^{I_{l}}_GR ^Gp_{I_{l}} \\
\end{aligned}
\]
那么

根据叉乘的性质,这个结果与论文中的公式是一样的。
剩下的雅克比就很好推了。
\[\frac{\partial ^{L_1}\delta p_{fi}}{\partial ^G \delta p_{I_{l}}} = - \ ^{L}_{I} R \ ^{I_{l}}_GR \tag{2}
\]
\[\frac{\partial ^{L_1}\delta p_{fi}}{\partial ^G \delta p_{I_{l+1}}} = \ ^{L}_{I} R \ ^{I_{l}}_GR \tag{4}
\]
\[\frac{\partial ^{L_1}\delta p_{fi}}{\partial ^L \delta p_I} = -^{L_l}_{L_{l+1}}R + I_{3\times 3} \tag{6}
\]

浙公网安备 33010602011771号