前言
上一篇我们知道了feign调用实现负载均衡是通过集成ribbon实现的。也较为详细的了解到了集成的过程。现在我们看一下ribbo是如何实现负载均衡的。写到这里我尚未去阅读源代码,我在这里盲猜一下: 他肯定是有一个从注册中心拉取配置的模块,一个选择调用服务的模块。然后我们就带着这样的指导思想去看源码。
一、ribbo是何时从eurake加载的服务列表?
从上一篇文章我们知道,feign调用实际上调用的是AbstractLoadBalancerAwareClient.executeWithLoadBalancer(...)方法,我们看一下该方法做了那些事情:
public T executeWithLoadBalancer(final S request, final IClientConfig requestConfig) throws ClientException {
LoadBalancerCommand<T> command = buildLoadBalancerCommand(request, requestConfig);
try {
return command.submit(
new ServerOperation<T>() {
@Override
public Observable<T> call(Server server) {
URI finalUri = reconstructURIWithServer(server, request.getUri());
S requestForServer = (S) request.replaceUri(finalUri);
try {
return Observable.just(AbstractLoadBalancerAwareClient.this.execute(requestForServer, requestConfig));
}
catch (Exception e) {
return Observable.error(e);
}
}
})
.toBlocking()
.single();
} catch (Exception e) {
// 省略
}
}
可以看到上述代码主要是创建了一个负载均衡执行命令类,然后执行请求。我们看看提交请求后执行的具体逻辑:
public Observable<T> submit(final ServerOperation<T> operation) {
final ExecutionInfoContext context = new ExecutionInfoContext();
// Use the load balancer
Observable<T> o =
(server == null ? selectServer() : Observable.just(server))
.concatMap(...);
// 省略部分代码
}
这里可以看到它使用了RXjava,rxjava主要是利用观察者思想实现的链式调用,其源码的实现稍显复杂,自己使用需要谨慎,借用Uncle Ben的一句话 ”with great power comes great responsibility “。我们关心一下上面的selectServers()方法,从方法名我们可以大致猜出,它是在选择调用的服务。我们看一下此方法的实现:
/**
* Return an Observable that either emits only the single requested server
* or queries the load balancer for the next server on each subscription
*/
private Observable<Server> selectServer() {
return Observable.create(new OnSubscribe<Server>() {
@Override
public void call(Subscriber<? super Server> next) {
try {
Server server = loadBalancerContext.getServerFromLoadBalancer(loadBalancerURI, loadBalancerKey);
next.onNext(server);
next.onCompleted();
} catch (Exception e) {
next.onError(e);
}
}
});
}
显然核心逻辑在loadBalancerContext.getServerFromLoadBalancer(...)里面,我们继续向下看:
public Server getServerFromLoadBalancer(@Nullable URI original, @Nullable Object loadBalancerKey) throws ClientException {
// 省略部分代码
ILoadBalancer lb = getLoadBalancer();
if (host == null) {
// Partial URI or no URI Case
// well we have to just get the right instances from lb - or we fall back
if (lb != null){
Server svc = lb.chooseServer(loadBalancerKey);
}
}
// 省略部分代码
return new Server(host, port);
}
非常戏剧性的是,我们看到他选择一个服务是通过ILoadBalancer进行的,那我们的看一下ILoadBalancer是怎么创建的。首先ILoadBalancer是属于Ribbon提供的类,其创建我们先看Ribbon自身的ILoadbalance创建过程,发现其是通过RibbonClientConfiguration的下述方法创建:
@Bean
@ConditionalOnMissingBean
public ILoadBalancer ribbonLoadBalancer(IClientConfig config,
ServerList<Server> serverList, ServerListFilter<Server> serverListFilter,
IRule rule, IPing ping, ServerListUpdater serverListUpdater) {
if (this.propertiesFactory.isSet(ILoadBalancer.class, name)) {
return this.propertiesFactory.get(ILoadBalancer.class, config, name);
}
return new ZoneAwareLoadBalancer<>(config, rule, ping, serverList,
serverListFilter, serverListUpdater);
}
可以看到上述方法先判断name对应的ILoadBalancer是否存在,不存在就创建了一个。我们看一下这个name代表的是什么:
@RibbonClientName
private String name = "client";
可以看到它取得的是客户端名称,其实就是@FeignClient的name属性的值,这里可以直接告诉你怎么实现动态给这里的name赋值的:在生成feign的代理对象过程的实现,会将feign通过@FeingClient的contentId属性进行Context隔离,在加载配置的时候会将@RibbonClientName属性的@Value属性的环境变量的值设置成当前@FeignClient的name值,具体可以直看NamedContextFactory.createContext()方法。言归正转,ZoneAwareLoadBalancer的构建显然是持有了Config,Rule,Ping,ServerList,ServerListFilter,ServerListUpdater。
现在我们看一下这四个类的分工与职责。
类 | 职责 |
---|---|
Config | config 主要是配置了服务名称,服务读取的一些配置比如刷新服务间隔等 |
Rule | 选用服务的规则,他决定了选用哪个服务 |
Ping | 主要用于探测服务列表中的服务是否可用 |
ServerList | 它主要是提供最新服务列表:包括上线、下线的服务(默认实现DiscoveryEnabledNIWSServerList) |
ServerListFilter | 用于过滤服务,do what you want to do. |
ServerListUpdater | 用于更新服务列表(当前的默认实现是启动定时器,然后调用ServerList获取服务列表,将当前负载均衡可用服务列表全覆盖) |
知道了上面的职责划分,我们看到ZoneAwareLoadBalancer最终初始化服务列表的方法:
public void updateListOfServers() {
List<T> servers = new ArrayList<T>();
if (serverListImpl != null) {
servers = serverListImpl.getUpdatedListOfServers();
LOGGER.debug("List of Servers for {} obtained from Discovery client: {}",
getIdentifier(), servers);
if (filter != null) {
servers = filter.getFilteredListOfServers(servers);
LOGGER.debug("Filtered List of Servers for {} obtained from Discovery client: {}",
getIdentifier(), servers);
}
}
updateAllServerList(servers);
}
基于上述我们可以清晰的了解到,获取服务列表发生在ServerList的实现中(serverListImpl.getUpdatedListOfServers())。
二、ribbo配合Eurake的ServerList实现
上面serverListImpl 实现类就是DiscoveryEnabledNIWSServerList,当调用getUpdatedListOfServers()最终调用到了如下所述方法,我们看一下他干了些什么:
// 省略了部分代码
private List<DiscoveryEnabledServer> obtainServersViaDiscovery() {
List<DiscoveryEnabledServer> serverList = new ArrayList<DiscoveryEnabledServer>();
EurekaClient eurekaClient = eurekaClientProvider.get();
if (vipAddresses!=null){
for (String vipAddress : vipAddresses.split(",")) {
List<InstanceInfo> listOfInstanceInfo = eurekaClient.getInstancesByVipAddress(vipAddress, isSecure, targetRegion);
for (InstanceInfo ii : listOfInstanceInfo) {
if (ii.getStatus().equals(InstanceStatus.UP)) {
DiscoveryEnabledServer des = createServer(ii, isSecure, shouldUseIpAddr);
serverList.add(des);
}
}
}
}
return serverList;
}
上述代码主要是通过EurakeClient 获取对应服务实例,然后将服务实例向DiscoveryEnabledServer进行映射。至此从服务列表的获取过程就完成了。
三、 Rule 服务的选择
知道了服务列表的来源,接下来就是最关键的一步了,选择一个服务调用。我们先看一下默认情况使用的是什么规则(RibbonClientConfiguration):
@Bean
@ConditionalOnMissingBean
public IRule ribbonRule(IClientConfig config) {
if (this.propertiesFactory.isSet(IRule.class, name)) {
return this.propertiesFactory.get(IRule.class, config, name);
}
ZoneAvoidanceRule rule = new ZoneAvoidanceRule();
rule.initWithNiwsConfig(config);
return rule;
}
显然默认使用的是ZoneAvoidanceRule。 这里我们看一下IRule都有哪些实现,然后阐述一下各个算法实现(这里没有再看源码的必要了,算法就那些):
类 | 描述 |
---|---|
ZoneAvoidanceRule | 基于可用性与区域的复合预测规则 |
RoundRobinRule | 轮询 |
WeightedResponseTimeRule | 根据响应时间选择 |
RandomRule | 随机规则 |
小结
总结起来,ribbon的核心组成就是ZoneAwareLoadBalancer的组成。其分工明确,服务列表的维护、服务的可用性、服务的选择都有专门的类去负责。下一篇将会着重讲一下Feign、Ribbon如何做到基于服务的配置隔离的,会适当配合实战,比如怎么自定义一个全局生效的路由规则,自定义一个基于服务名的生效的路由规则等等。