欧拉函数(互质)

定义:

欧拉函数是指:一个数N,在1~N这个范围内,与N互质的数的“个数”记作 \(\phi\)(N)
互质是指gcd(i,N) = 1
因为一个数总能被分解为:N = P\(_{1}\)\(^{a1}\)*P\(_{2}\)\(^{a2}\)*P\(_{3}\)\(^{a3}\)*....*P\(_{k}\)\(^{ak}\)
且欧拉函数为一个积性函数:\(\phi\)(mn) = \(\phi\)(m) * \(\phi\)(n)

所以我们可以得到\(\phi\)(N) = \(\phi\)(P\(_{1}\)\(^{a1}\))*\(\phi\)(P\(_{2}\)\(^{a2}\))*\(\phi\)(P\(_{3}\)\(^{a3}\))*......*\(\phi\)(P\(_{k}\)\(^{ak}\))
对于其中的某一项\(\phi\)(P\(_{i}\)\(^{ai}\))分析:从1到P\(_{i}\)\(^{ai}\)共有P\(_{i}\)\(^{ai}\)个数,其中与P\(_{i}\)\(^{ai}\)不互质的有P\(_{i}\),2*P\(_{i}\),3*P\(_{i}\).....P\(_{i}\)\(^{ai-1}\)*P\(_{i}\)共有P\(_{i}\)\(^{ai-1}\)项,所以互质的就有P\(_{i}\)\(^{ai}\)-P\(_{i}\)\(^{ai-1}\)项,所以我们可以得到公式

\(\phi\)(N) = N * (1-\(\frac{1}{a1}\))*(1-\(\frac{1}{a2}\))*.....*(1-\(\frac{1}{ak}\))

代码实现:

  1. 朴素算法(公式法):
void solve() {
	int x;
	cin>>x;
	int res = x;
	for(int i = 2;i <= x/i;++i){
		if(x%i == 0){
			while(x%i == 0) x/= i;
			res = res/i*(i-1);
		}
	}
	if(x>1) res = res/x*(x-1);
	cout<<res<<endl;
}

2.线性筛法

以上解释引用自Sundae

int primes[N],cnt;//线性筛 
int phi[N];//欧拉函数 
bool st[N];
void get_eulers(int n){
	phi[1] = 1;
	for(int i = 2;i <= n;++i){
		if(!st[i]){
			primes[cnt++] = i;
			phi[i] = i-1;
		}
		for(int j = 0;primes[j]<=n/i;++j){
			st[primes[j]*i] = true;
			if(i%primes[j] == 0){
				phi[primes[j]*i] = primes[j]*phi[i];
				break;
			}
			phi[primes[j]*i] = phi[i]*(primes[j]-1);
		}
	}
}
posted @ 2022-10-24 18:41  empty_y  阅读(700)  评论(0)    收藏  举报