【JDK1.8集合】之HashMap
HashMap:
成员变量:
//初始容量16 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 //最大容量2^30 static final int MAXIMUM_CAPACITY = 1 << 30; //默认填充因子, static final float DEFAULT_LOAD_FACTOR = 0.75f; //Entry链表最大长度,大于该长度,将链表转化为红黑树存储(JDK1.8新增) static final int TREEIFY_THRESHOLD = 8; //Entry链表小于该长度,将红黑树转化为链表(JDK1.8新增) static final int UNTREEIFY_THRESHOLD = 6; //转化为红黑树对应的table的最小大小 static final int MIN_TREEIFY_CAPACITY = 64; //存储元素的数组,总是2的幂 transient Node<K,V>[] table; //存放具体元素的Set transient Set<Map.Entry<K,V>> entrySet; //记录HashMap发生结构性变化的次数(value覆盖不属于结构性变化) transient int modCount; //扩容的时候下一个table大小的值,(table.length * load factor) //size大于这个值会进行resize()扩容 int threshold; //记录HashMap装载因子 final float loadFactor;
构造函数:
//无参构造,参数均为默认值 public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted } //指定初始容量的构造方法,装载因子为0.75 public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } //指定初始容量和装载因子 public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; //保证initialCapacity的值总为2的幂,tableSizeFor方法返回大于initialCapacity的最小二次幂 this.threshold = tableSizeFor(initialCapacity); } //指定Map的构造 public HashMap(Map<? extends K, ? extends V> m) { this.loadFactor = DEFAULT_LOAD_FACTOR; putMapEntries(m, false); } //将指定Map中的元素插入到HashMap中, //evict为false,代表是在创建HashMap时调用这个函数 //evict为true,代表是在创建HashMap后才调用这个函数 final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) { int s = m.size(); if (s > 0) { //该方法如果是在创建HashMap时,table为null的 if (table == null) { // pre-size //根据指定map的size计算需要创建的HashMap的容量 float ft = ((float)s / loadFactor) + 1.0F; int t = ((ft < (float)MAXIMUM_CAPACITY) ? (int)ft : MAXIMUM_CAPACITY); // if (t > threshold) threshold = tableSizeFor(t); } //如果指定map的size大于threadshold,需要进行resize() else if (s > threshold) resize(); for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) { K key = e.getKey(); V value = e.getValue(); // putVal(hash(key), key, value, false, evict); } } }
添加元素:
//put方法,如果key存在,新value替换原来存在的value //将key做了一次hash,得到hash值 public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } //putIfAbsent与put方法都调用putVal,唯一区别是,第三个参数,一个是false,一个是true,如果为true,不改变已经存在的key。 public V putIfAbsent(K key, V value) { return putVal(hash(key), key, value, true, true); } //onlyIfAbsent 如果为true,不改变已经存在的key。 //evict 如果false,table处于creation mode。 final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) { //如果table为空,需要初始化 n = (tab = resize()).length; } //根据hash值确定节点在数组中插入的位置,如果该位置没有元素则插入 //因为n总是2的幂,i=hash%n if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); //如果该位置有元素 else { Node<K,V> e; K k; //比较旧元素和待插入元素的hash值和key值 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; //如果旧元素是红黑树节点,调用putTreeVal() else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); //旧元素为链表节点,寻找插入位置 else { for (int binCount = 0; ; ++binCount) { //如果找到插入位置,插入新节点 if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); //如果链表节点超过TREEIFY_THRESHOLD - 1,链表转化为红黑树 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } //如果链表中节点的key值与插入元素的key值相等则break if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; //用来遍历链表,和e=p.next组合 p = e; } } //在数组中找到key,hash与待插入元素相等的节点 if (e != null) { // existing mapping for key //记录e的value V oldValue = e.value; //onlyIfAbsent为false或者旧值为null if (!onlyIfAbsent || oldValue == null) //新值替换 e.value = value; //访问后回调 afterNodeAccess(e); // return oldValue; } } ++modCount; //实际大小大于threshold,扩容 if (++size > threshold) resize(); //插入后回调 afterNodeInsertion(evict); return null; } //初始化,或者扩容的方法, final Node<K,V>[] resize() { //记录下旧的table Node<K,V>[] oldTab = table; //如果旧的table为空,oldCap为0,不为空,oldCap为旧table的大小 int oldCap = (oldTab == null) ? 0 : oldTab.length; //记录旧的扩容值,默认0 int oldThr = threshold; //定义了newCap,newThr为0 int newCap, newThr = 0; if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { //oldCap比最大容量大,threshold为int最大值 threshold = Integer.MAX_VALUE; return oldTab; } //如果当前容量小于最大容量,并且扩容过或者准备扩容,那么newThr翻一倍。 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; } //如果oldThr大于0,oldThr就是newCap的大小 else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { //如果oldCap和oldThr都为0,就会在这里赋值newCap为16,newThr为12 newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } //如果新的阀值为0,需要计算新的阀值 if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } //设置新的阀值 threshold = newThr; //创建新的桶 // @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) { //将oldTab中的节点reHash到newTab里面 for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; //如果节点是单个节点,则直接在newTab里面进行重定位 if (e.next == null) newTab[e.hash & (newCap - 1)] = e; //如果节点是TreeNode节点,要进行红黑树的rehash操作 else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); //如果是链表,进行链表的rehash操作 else { // preserve order //一个桶中有多个元素,遍历将它们移到新的bucket或者不改变 Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; //根据e.hash&oldCap 判断节点位置rehash后是否发生改变 if ((e.hash & oldCap) == 0) {//不改变 if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } //放到新的bucket else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; //rehash后新节点的位置为原来基础上加上oldCap newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; } //hash冲突的情况: //1.两节点key值相同,则hash值相同,冲突 //2.两节点key值不同,hash值相同,冲突 //3.两节点key值不同,hash不同,在对数组取模后相同,冲突 final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab, int h, K k, V v) { Class<?> kc = null; boolean searched = false; TreeNode<K,V> root = (parent != null) ? root() : this; //从根节点开始查找合适的位置 for (TreeNode<K,V> p = root;;) { int dir, ph; K pk; if ((ph = p.hash) > h) //dir小于0,查找当前节点的左子节点 dir = -1; else if (ph < h) //dir大于0,查找当前节点的右子节点 dir = 1; //如果hash值相同,key相同 else if ((pk = p.key) == k || (k != null && k.equals(pk))) return p; //当前节点与待插入节点key不同,hash值相同 //k没有实现Comparable接口 //pk为空,或者k.compareTo(pk)返回值为0 else if ((kc == null && (kc = comparableClassFor(k)) == null) || (dir = compareComparables(kc, k, pk)) == 0) { // if (!searched) { TreeNode<K,V> q, ch; searched = true; if (((ch = p.left) != null && (q = ch.find(h, k, kc)) != null) || ((ch = p.right) != null && (q = ch.find(h, k, kc)) != null)) return q; } //如果k不可比较,走这里进行比较 dir = tieBreakOrder(k, pk); } //xp记录当前节点父节点 TreeNode<K,V> xp = p; if ((p = (dir <= 0) ? p.left : p.right) == null) { //找到待插入的位置 Node<K,V> xpn = xp.next; TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn); if (dir <= 0) xp.left = x; else xp.right = x; xp.next = x; x.parent = x.prev = xp; if (xpn != null) ((TreeNode<K,V>)xpn).prev = x; //插入后,要进行树的平衡 moveRootToFront(tab, balanceInsertion(root, x)); return null; } } } final void treeifyBin(Node<K,V>[] tab, int hash) { int n, index; Node<K,V> e; //如果tab=null或者tab的长度小于MIN_TREEIFY_CAPACITY(64) 进行扩容 if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY) resize(); //否则将链表转化为红黑树 else if ((e = tab[index = (n - 1) & hash]) != null) { TreeNode<K,V> hd = null, tl = null; do { TreeNode<K,V> p = replacementTreeNode(e, null); if (tl == null) hd = p; else { p.prev = tl; tl.next = p; } tl = p; } while ((e = e.next) != null); if ((tab[index] = hd) != null) hd.treeify(tab); } }
//调用putMapEntries public void putAll(Map<? extends K, ? extends V> m) { putMapEntries(m, true); }
获取元素:
//根据key获取元素 public V get(Object key) { Node<K,V> e; //对key进行hash后,根据hash值和key进行查找 return (e = getNode(hash(key), key)) == null ? null : e.value; } final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; //通过 hash&(n-1) 得到元素的保存位置 if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { //检查第一个节点 if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; if ((e = first.next) != null) { //如果是红黑树 if (first instanceof TreeNode) return ((TreeNode<K,V>)first).getTreeNode(hash, key); do { //如果是链表 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; } //从根节点开始查找 final TreeNode<K,V> getTreeNode(int h, Object k) { return ((parent != null) ? root() : this).find(h, k, null); }
删除元素:
//删除指定key对应的节点,并返回该节点的value public V remove(Object key) { Node<K,V> e; return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value; } final Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) { Node<K,V>[] tab; Node<K,V> p; int n, index; //table不为null,长度大于0,并且key的hash值在table里面对应的元素不为null if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) { Node<K,V> node = null, e; K k; V v; //检查第一个节点, if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) node = p; else if ((e = p.next) != null) { //如果节点为树 if (p instanceof TreeNode) node = ((TreeNode<K,V>)p).getTreeNode(hash, key); else { do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { node = e; break; } p = e; } while ((e = e.next) != null); } } if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) { if (node instanceof TreeNode) ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable); else if (node == p) tab[index] = node.next; else p.next = node.next; ++modCount; --size; afterNodeRemoval(node); return node; } } return null; }
知识的学习,要真诚与谦虚才不会有眼无珠,人生苦短,不能浪费时间做无用功。
人生学习最悲哀的不过是,因为无知傲慢错过真正的好东西,又因为无知贪婪在假东西上耗费生命。

浙公网安备 33010602011771号