"""country_codes.py"""
from pygal_maps_world.i18n import COUNTRIES
def get_country_code(country_name):
for code, name in COUNTRIES.items():
if name == country_name:
return code
return None
"""JSON"""
import json, pygal
import pygal.style
from country_codes import get_country_code
filename = 'population_data.json'
with open(filename) as f:
pop_data = json.load(f)
cc_populations = {}
for pop_dict in pop_data:
if pop_dict['Year'] == '2010':
country_name = pop_dict['Country Name']
population = int(float(pop_dict['Value']))
code = get_country_code(country_name)
if code:
cc_populations[code] = population
cc_pops_1, cc_pops_2, cc_pops_3 = {}, {}, {}
for cc, pop in cc_populations.items():
if pop < 10000000:
cc_pops_1[cc] = pop
elif pop < 1000000000:
cc_pops_2[cc] = pop
else:
cc_pops_3[cc] = pop
wm_style = pygal.style.RotateStyle('#336699', base_style=pygal.style.LightColorizedStyle)
wm = pygal.maps.world.World(style=wm_style)
wm.title = 'World Population in 2010, by Country'
wm.add('0-10m', cc_pops_1)
wm.add('10m-1bn', cc_pops_2)
wm.add('>1bn', cc_pops_3)
wm.render_to_file('world_population.svg')
"""CSV"""
import csv
from matplotlib import pyplot as plt
from datetime import datetime
filename = 'death_valley_2014.csv'
with open(filename) as f:
reader = csv.reader(f)
header_row = next(reader)
dates, highs, lows,= [], [], []
for row in reader:
try:
current_date = datetime.strptime(row[0], "%Y-%m-%d")
high = int(row[1])
low = int(row[3])
except:
print(current_date, 'missing data')
else:
dates.append(current_date)
highs.append(high)
lows.append(low)
fig = plt.figure(dpi=128, figsize=(10, 6))
plt.plot(dates, highs, c='red', alpha=0.5)
plt.plot(dates, lows, c='blue', alpha=0.5)
plt.fill_between(dates, highs, lows, facecolor='blue', alpha=0.1)
title = "Daily high and low temperatures - 2014\nDeath Valley, CA"
plt.title(title, fontsize=20)
plt.xlabel('', fontsize=16)
fig.autofmt_xdate()
plt.ylabel("Temperature (F)", fontsize=16)
plt.tick_params(axis='both', which='major', labelsize=16)
plt.show()