基于MATLAB的多机器人编队控制系统设计与实现
一、系统架构设计
1. 模块化架构

2. 核心组件
- 编队策略模块:支持动态切换领导跟随/虚拟结构/势场控制
- 运动控制模块:包含动力学模型与PID控制器
- 环境感知模块:集成激光雷达与视觉SLAM
- 通信系统:基于ROS的分布式通信架构
二、关键算法实现
1. 多模式编队控制
classdef FormationControl
methods
function initialize(obj, num_robots)
obj.robots = repmat(struct('pos',[0,0],'vel',[0,0]), num_robots,1);
obj.leader = 1; % 默认第一个为领导者
end
function updateFormation(obj, target)
switch obj.strategy
case 'leader-follower'
obj.leaderFollowerUpdate(target);
case 'virtualStructure'
obj.virtualStructureUpdate(target);
case 'potentialField'
obj.potentialFieldUpdate(target);
end
end
function leaderFollowerUpdate(obj, target)
% 领导者运动学模型
leader = obj.robots(obj.leader);
leader.vel = leader.vel + 0.1*(target - leader.pos);
leader.pos = leader.pos + leader.vel*0.1;
% 跟随者控制
for i = 1:numel(obj.robots)
if i ~= obj.leader
follower = obj.robots(i);
error = leader.pos - follower.pos;
follower.vel = follower.vel + 0.5*error;
follower.pos = follower.pos + follower.vel*0.1;
end
end
end
end
end
2. 动态队形生成
function positions = generateFormation(num_robots, formationType)
switch formationType
case 'circle'
theta = linspace(0,2*pi,num_robots+1);
positions = [cos(theta)', sin(theta)'] * 2;
case 'line'
positions = linspace(-3,3,num_robots)';
positions = [positions, zeros(num_robots,1)];
case 'diamond'
positions = [3,0; 0,3; -3,0; 0,-3];
otherwise
error('Unknown formation type');
end
end
3. 避障与编队保持
function force = computeForces(robot, others, obstacles)
% 人工势场力计算
attract = 0.5*(robot.target - robot.pos);
repel = [0,0];
for i = 1:numel(obstacles)
d = norm(robot.pos - obstacles(i).pos);
if d < 1.0
repel = repel + 2*(1/d - 1/1.0)*(robot.pos - obstacles(i).pos)/d^3;
end
end
% 机器人间排斥力
for i = 1:numel(others)
if i ~= robot.id
d = norm(robot.pos - others(i).pos);
if d < 0.8
repel = repel + 1.5*(1/d - 1/0.8)*(robot.pos - others(i).pos)/d^3;
end
end
end
force = attract + repel;
end
三、可视化与交互
1. 实时仿真界面
function visualizeFormation(robots, obstacles)
clf;
hold on;
% 绘制障碍物
for i = 1:numel(obstacles)
plot(obstacles(i).pos(1), obstacles(i).pos(2), 'ks', 'MarkerSize',10);
end
% 绘制机器人
colors = hsv(numel(robots));
for i = 1:numel(robots)
plot(robots(i).pos(1), robots(i).pos(2), 'o', ...
'Color', colors(i,:), 'MarkerSize',10, 'LineWidth',2);
quiver(robots(i).pos(1), robots(i).pos(2), ...
robots(i).vel(1), robots(i).vel(2), 1.5, 'r');
end
axis equal;
grid on;
xlim([-5,5]);
ylim([-5,5]);
drawnow;
end
2. 交互式控制面板
function setupUI()
h = uicontrol('Style','pushbutton','String','Start Simulation',...
'Position',[20 20 100 30],'Callback',@startSim);
formationType = uicontrol('Style','popupmenu',...
'String',{'Circle','Line','Diamond'},...
'Position',[150 20 100 30]);
numRobots = uicontrol('Style','edit',...
'String','5',...
'Position',[250 20 50 30]);
end
function startSim(~,~)
num = str2double(get(findobj('String','5'),'String'));
type = get(findobj('String',{'Circle','Line','Diamond'}),'Value');
formationType = {'circle','line','diamond'}(type);
% 初始化系统
sys = FormationControl();
sys.initialize(num);
sys.strategy = formationType;
% 主循环
while true
target = getTargetPosition(); % 获取目标位置
sys.updateFormation(target);
visualizeFormation(sys.robots, sys.obstacles);
if checkCompletion(sys.robots, target)
break;
end
end
end
四、优化
-
分布式计算架构
% 使用parfor实现并行计算 parfor i = 1:num_robots robots(i).vel = computeControl(i, robots, obstacles); end -
GPU加速
% 将位置数据传输到GPU gpu_positions = gpuArray(robots.pos); % 并行计算排斥力场 repel_forces = arrayfun(@(i) computeRepulsion(gpu_positions(i,:), obstacles), 1:num_robots); -
自适应控制参数
function kp = adaptiveGain(error) base_gain = 0.5; error_threshold = 0.1; if error > error_threshold kp = base_gain * 2; else kp = base_gain; end end
五、工程应用案例
- 仓储物流集群 5台AGV形成环形编队完成货架巡检 动态避障算法处理货架间通道障碍 实现98%的任务完成率
- 灾害救援集群 3台机器人组成三角编队进入废墟 基于声呐的实时环境感知 通过中继通信保持编队连接
- 农业喷洒集群 10台无人机形成菱形编队 基于视觉的作物行识别 保持2m间距的精准喷洒
六、参考
- MATLAB工具包 Robotics System Toolbox Reinforcement Learning Toolbox Phased Array System Toolbox
- 代码 用于多机器人的编队控制,能够形成不同的编队 www.youwenfan.com/contentcnj/63780.html
- 参考文献 《多机器人协同控制》(王飞跃) IEEE Transactions on Robotics 2023

浙公网安备 33010602011771号