基于解析法的四轴SCARA机器人正逆运动学代码
一、正运动学实现(C++)
#include <cmath>
#include <array>
struct Pose {
double x, y, z; // 末端位姿
double yaw; // 末端偏航角
};
// DH参数定义(示例值)
const double L1 = 0.2; // 基座到J2连杆长度
const double L2 = 0.3; // J2到J3连杆长度
const double L3 = 0.15; // J3垂直移动行程
// 正运动学计算
Pose forwardKinematics(double theta1, double theta2, double d3, double theta4) {
Pose pose;
// 平面位置计算
pose.x = L1 * cos(theta1) + L2 * cos(theta1 + theta2);
pose.y = L1 * sin(theta1) + L2 * sin(theta1 + theta2);
pose.z = d3; // 垂直方向位移
// 姿态计算
double yaw = theta1 + theta2 + theta4;
pose.yaw = yaw;
return pose;
}
二、逆运动学实现(C++)
#include <array>
#include <cmath>
// 逆运动学求解(带奇异点检测)
bool inverseKinematics(const Pose& target,
double& theta1, double& theta2,
double& d3, double& theta4) {
// 奇异点检测(工作空间边界)
double r = std::sqrt(target.x * target.x + target.y * target.y);
if(r > (L1 + L2) || r < std::abs(L1 - L2)) {
return false; // 超出工作空间
}
// 关节角度计算(几何法)
double k1 = L1 + L2 * cos(target.yaw);
double k2 = L2 * sin(target.yaw);
// 计算θ2(两解)
double cos_theta2 = (target.x*k1 + target.y*k2) / (r*(L1*L1 + L2*L2 + 2*L1*L2*cos(target.yaw)));
double sin_theta2 = (target.y*k1 - target.x*k2) / (r*(L1*L1 + L2*L2 + 2*L1*L2*cos(target.yaw)));
double theta2_1 = std::atan2(sin_theta2, cos_theta2);
double theta2_2 = theta2_1 + M_PI; // 第二解
// 选择最近解(根据当前关节状态优化)
double current_theta2 = 0.0; // 假设当前角度为0
double delta1 = std::abs(theta2_1 - current_theta2);
double delta2 = std::abs(theta2_2 - current_theta2);
double selected_theta2 = (delta1 < delta2) ? theta2_1 : theta2_2;
// 计算θ1
theta1 = std::atan2(target.y, target.x)
- std::atan2(L2 * sin(selected_theta2), L1 + L2 * cos(selected_theta2));
// 计算d3
d3 = target.z;
// 计算θ4
theta4 = target.yaw - theta1 - selected_theta2;
return true;
}
三、工程优化策略
1. 关节限位处理
// 关节角度约束(示例范围)
const double theta_min[4] = {-M_PI/2, -M_PI/2, 0.0, -M_PI};
const double theta_max[4] = {M_PI/2, M_PI/2, 0.5*M_PI, M_PI};
// 角度约束函数
void clampAngles(double& angle, double min_val, double max_val) {
while(angle > max_val) angle -= 2*M_PI;
while(angle < min_val) angle += 2*M_PI;
angle = std::max(min_val, std::min(max_val, angle));
}
2. 多解选择策略
// 多解生成与选择
std::array<double, 4> getMultipleSolutions(const Pose& target) {
std::array<double, 4> solutions;
// 生成θ2的两个解
double k1 = L1 + L2 * cos(target.yaw);
double k2 = L2 * sin(target.yaw);
double cos_theta2 = (target.x*k1 + target.y*k2) / (r*(L1*L1 + L2*L2 + 2*L1*L2*cos(target.yaw)));
double sin_theta2 = (target.y*k1 - target.x*k2) / (r*(L1*L1 + L2*L2 + 2*L1*L2*cos(target.yaw)));
double theta2_1 = std::atan2(sin_theta2, cos_theta2);
double theta2_2 = theta2_1 + M_PI;
// 选择最优解(基于最小能量)
double current_theta2 = 0.0; // 假设当前角度
double delta1 = std::abs(theta2_1 - current_theta2);
double delta2 = std::abs(theta2_2 - current_theta2);
solutions[1] = (delta1 < delta2) ? theta2_1 : theta2_2;
solutions[3] = (delta1 < delta2) ? theta2_2 : theta2_1; // 对称解
return solutions;
}
四、完整控制流程
int main() {
// 目标位姿(示例)
Pose target = {0.5, 0.3, 0.2, M_PI/4};
// 逆解计算
double theta1, theta2, d3, theta4;
if(!inverseKinematics(target, theta1, theta2, d3, theta4)) {
std::cerr << "目标点超出工作空间!" << std::endl;
return -1;
}
// 角度约束处理
clampAngles(theta1, theta_min[0], theta_max[0]);
clampAngles(theta2, theta_min[1], theta_max[1]);
clampAngles(d3, theta_min[2], theta_max[2]);
clampAngles(theta4, theta_min[3], theta_max[3]);
// 正解验证
Pose actual = forwardKinematics(theta1, theta2, d3, theta4);
std::cout << "位置误差: ("
<< target.x - actual.x << ", "
<< target.y - actual.y << ", "
<< target.z - actual.z << ")" << std::endl;
return 0;
}
五、测试验证方法
void testWorkspace() {
// 生成工作空间网格点
for(double x = -0.5; x <= 0.5; x += 0.1) {
for(double y = -0.4; y <= 0.4; y += 0.1) {
Pose target = {x, y, 0.1, 0.0};
double theta1, theta2, d3, theta4;
bool success = inverseKinematics(target, theta1, theta2, d3, theta4);
std::cout << "点("<< x << ","<< y << ") 可达: "
<< (success ? "是" : "否") << std::endl;
}
}
}
参考代码 4轴scara机器人的正逆解代码 www.youwenfan.com/contentcnh/56976.html
六、扩展功能实现
1. 三维空间扩展
// 添加俯仰角控制
struct Pose3D {
double x, y, z;
double yaw, pitch; // 新增俯仰角
};
// 修改正运动学方程
pose3D forwardKinematics3D(double theta1, double theta2,
double d3, double theta4, double theta5) {
// 增加俯仰角计算
double pitch = theta5;
// ... 其他计算
}
2. 动力学补偿
// 添加重力补偿项
void gravityCompensation(double& torque1, double& torque2) {
static const double m = 1.2; // 末端质量
static const double g = 9.81;
torque1 += m * g * L1 * sin(theta1);
torque2 += m * g * (L1 * sin(theta1) + L2 * sin(theta1 + theta2));
}
七、参考文献
- SCARA机器人正运动学公式推导
- 解析法逆解实现细节
- 工业级运动控制实现方案
- 多解选择策略与优化
建议结合具体机械结构参数调整DH参数,并通过实际标定优化模型精度。对于实时控制系统,推荐使用C++实现并配合实时操作系统(RTOS)。

浙公网安备 33010602011771号