POJ_1050_To the Max
To the Max
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 49811 | Accepted: 26400 |
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Sample Output
15
Source
- 最大子矩阵和
- 是一维的最大子串和的二维扩展
- 那我们把每列做一个前缀和,O1得到从i行到j行单列的和,之后用最大子串和dp求解就行
1 #include <iostream> 2 #include <string> 3 #include <cstdio> 4 #include <cstring> 5 #include <algorithm> 6 #include <climits> 7 #include <cmath> 8 #include <vector> 9 #include <queue> 10 #include <stack> 11 #include <set> 12 #include <map> 13 using namespace std; 14 typedef long long LL ; 15 typedef unsigned long long ULL ; 16 const int maxn = 1e2 + 10 ; 17 const int inf = 0x3f3f3f3f ; 18 const int npos = -1 ; 19 const int mod = 1e9 + 7 ; 20 const int mxx = 100 + 5 ; 21 const double eps = 1e-6 ; 22 const double PI = acos(-1.0) ; 23 24 int n, ans, a[maxn][maxn], b[maxn], c[maxn][maxn]; 25 int main(){ 26 // freopen("in.txt","r",stdin); 27 // freopen("out.txt","w",stdout); 28 while(~scanf("%d",&n)){ 29 ans=-inf; 30 memset(c,0,sizeof(c)); 31 for(int i=1;i<=n;i++) 32 for(int j=1;j<=n;j++){ 33 scanf("%d",&a[i][j]); 34 c[i][j]=c[i-1][j]+a[i][j]; 35 } 36 for(int i=1;i<=n;i++){ 37 for(int j=i;j<=n;j++){ 38 b[0]=0; 39 for(int k=1;k<=n;k++){ 40 if(b[k-1]>=0){ 41 b[k]=b[k-1]+c[j][k]-c[i-1][k]; 42 }else{ 43 b[k]=c[j][k]-c[i-1][k]; 44 } 45 ans=max(ans,b[k]); 46 } 47 } 48 } 49 printf("%d\n",ans); 50 } 51 return 0; 52 }