test tflops
import torchvision.models as models
import torch
import onnx
from ptflops import get_model_complexity_info
# from time import sleep
def get_base_info():
print(torch.__version__)
# print(torch.cuda.get_device_name())
if torch.cuda.is_available():
print("is availiable")
else:
print("not availiable")
def get_flops_resnet():
net = models.resnet50()
macs, params = get_model_complexity_info(
net,
(3, 224, 224),
as_strings=True,
print_per_layer_stat=True,
verbose=True)
print('{:<30} {:<8}'.format('Computational complexity: ', macs))
print('{:<30} {:<8}'.format('Number of parameters: ', params))
def get_flops_yolov5m():
# net = torch.hub.load('ultralytics/yolov5', 'yolov5m', pretrained=True)
path='/disk2T/dyling/code/yolov5-master/'
net = torch.hub.load(path, 'yolov5m', pretrained=True, source="local")
imgs = ['https://ultralytics.com/images/zidane.jpg'] # batch of images
macs, params = get_model_complexity_info(
net,
(3, 640, 640),
as_strings=True,
print_per_layer_stat=True,
verbose=True)
print('{:<30} {:<8}'.format('Computational complexity: ', macs))
print('{:<30} {:<8}'.format('Number of parameters: ', params))
def load_model():
model = onnx.load("/disk2T/dyling/test_result/detail_info/yolov5m.onnx")
# model.eval()
if __name__ == "__main__":
#get_flops_resnet()
get_flops_yolov5m()
三十,就承认自己是个废物吧!

浙公网安备 33010602011771号