Hadoop 4 MapReduce
对单词个数统计的MapReduce的案例
Mapper类:
package main.java.worldClient;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
/**
* <KEYIN,VALUEIN,KEYOUT,VALUEOUT>
* 分别对应map输入和输出的key和value对应的数据类型
* 默认map的输入,key是改行在文件中的偏移量,value是文件中一行的内容
* @author Lenovo
*
*/
public class WCMapper extends Mapper<LongWritable, Text, Text, LongWritable>{
/**
* 切分单词,然后输出
*/
@Override
protected void map(LongWritable key, Text value,Mapper<LongWritable, Text, Text, LongWritable>.Context context)
throws IOException, InterruptedException {
//获取一行信息
String line = value.toString();
String words[] = line.split(" ");
LongWritable writable = new LongWritable(1);
for(String word:words){
//将输出写入context
//write(a,b)中a与mapper(keyin,valuein,keyout,valueout)的keyout与valueout对应
context.write(new Text(word), writable);
}
}
}
Reduce类:
package main.java.worldClient;
import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
/**
* <KEYIN,VALUEIN,KEYOUT,VALUEOUT>
* reduce的输入和输出的key和value
* 输入的key和value肯定和map输出的key和value一致
* @author Lenovo
*
*/
public class WCReducer extends Reducer<Text, LongWritable, Text, LongWritable>{
@Override
protected void reduce(Text key, Iterable<LongWritable> values,
Reducer<Text,LongWritable,Text,LongWritable>.Context context)
throws IOException, InterruptedException {
int sum = 0;
Iterator<LongWritable> iter = values.iterator();
while(iter.hasNext()){
LongWritable value = iter.next();
sum += value.get();
}
context.write(key, new LongWritable(sum));
}
}
Runner类:
package main.java.worldClient;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WCRunner {
public static void main(String[] args) {
Configuration conf = new Configuration();
try{
Job job = Job.getInstance(conf);
job.setJobName("wc MR");
job.setJarByClass(WCRunner.class);
job.setMapperClass(WCMapper.class);
job.setReducerClass(WCReducer.class);
/*
* 如果map和reduce的输出类型一致可以不设置map的输出
*/
//map输出的key,value
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
//reduce输出的key,value
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
//输出目录必须不存在
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}catch (Exception e) {
// TODO: handle exception
e.printStackTrace();
}
}
}
在windows环境下运行会报控指针错误,目前我正在查找解决方法,所以通过Xshell与Xftp将写好的java导出jar包以及程序需要的文件传到linux虚拟机内(用linux命令将输入文件导入到hadoop的目录下这样会在接下来方便写命令),在linux下运行测试。hadoop jar找到的jar包为本地jar包无法找hdfs上的jar文件(我自己的理解不知道对不对)
主要步骤:
1:bin/hadoop fs -mkdir -p /MRTest/input 在hdfs下创建目录
2:bin/hadoop fs -put ~/WCTest.txt.txt /MRTest/input 将程序需要执行的文件放到input文件夹下
3:bin/hadoop jar ~/wctest.jar main.java.worldClient.WCRunner /MRTest/input /MRTest/output 运行jar包 其中output必须时不存在的文件目录
浙公网安备 33010602011771号