POJ_1019 Number Sequence 【递推】
题目:
A single positive integer i is given. Write a program to find the digit located in the position i in the sequence of number groups S1S2...Sk. Each group Sk consists of a sequence of positive integer numbers ranging from 1 to k, written one after another.
For example, the first 80 digits of the sequence are as follows:
11212312341234512345612345671234567812345678912345678910123456789101112345678910
For example, the first 80 digits of the sequence are as follows:
11212312341234512345612345671234567812345678912345678910123456789101112345678910
Input
The first line of the input file contains a single integer t (1 ≤ t ≤ 10), the number of test cases, followed by one line for each test case. The line for a test case contains the single integer i (1 ≤ i ≤ 2147483647)
Output
There should be one output line per test case containing the digit located in the position i.
Sample Input
2 8 3
Sample Output
2 2
题意分析:
把这些数,根据构造它们的那个数划分成 1; 1,2; 1,2,3;……
然后分析一个数字的位数是怎么确定的,其实,因为数是十进制,可以直接取以10为底的对数+1.
$log_{10}(N)+1$
在写程序的时候,一定要注意N要用double类型。然后我们可以递推求出所有可能的小于MAXN的数,最后一组数就是31268,这个数可以通过写个测试程序测试一下就出来了。
然后就可以确定输入的数字在整个序列中的哪个数字组中,接下来就是确定在这个数字组中的那个数中。
根据序列递增,然后利用求位数的公式,可以直接找到这个数。然后根据N的具体位置,取余取出来即可。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long LL;
const LL MAXN = 2147483647;
const int Msize = 32000;
LL Sum[Msize], a[Msize];
void getS()
{
Sum[1] = a[1] = 1;
int i;
for(i = 2; i < Msize; i++)
{
a[i] = a[i-1] + (int)log10((double)i)+1;
Sum[i] = Sum[i-1] + a[i];
}
return;
}
LL Pow(LL a, LL b)
{
LL ans = 1;
while(b)
{
if(b&1)
ans = ans*a;
b>>=1;
a = a*a;
}
return ans;
}
int main()
{
getS();
LL N;
int T;
scanf("%d", &T);
while(T--)
{
scanf("%I64d", &N);
int i = 1, j, len, pos;
while(N > Sum[i])
{
i++;
}
//第N位再i-1所代表的数字区
pos = N - Sum[i-1];
len = 0;
for(j = 1; len < pos ; j++)
{
len += (int)log10(j*1.0) + 1;
}
//N为在i-1数字区中的第j-1个数中,len为这个数字的最后一位的位置
int ans = (j-1)/Pow(10, len-pos)%10;
printf("%d\n", ans);
}
return 0;
}

浙公网安备 33010602011771号