• 博客园logo
  • 会员
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • HarmonyOS
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
dwtfukgv
博客园    首页    新随笔    联系   管理    订阅  订阅
POJ 2151 Check the difficulty of problems (概率DP)

题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率。

析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 k 个题的概率,sum[i][j] 表示第 i 个队伍,做出 1-j 个题的概率,ans1等于,

T个队伍,至少解出一个题的概率,ans2 表示T个队伍,至少解出一个题,但不超过N-1个题的概率,最后用ans1-ans2即可。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1;

typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 5e4 + 5;
const LL mod = 10000000000007;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){  return b == 0 ? a : gcd(b, a%b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
    return r >= 0 && r < n && c >= 0 && c < m;

}
double dp[2][35][35];
double a[1005][35];
double sum[1005][35];

int main(){
    int t;
    while(scanf("%d %d %d", &n, &m, &t) == 3 && m+n+t){
        for(int i = 1; i <= m; ++i)
            for(int j = 1; j <= n; ++j)
                scanf("%lf", &a[i][j]);
        memset(dp, 0, sizeof dp);
        dp[1][0][0] = dp[0][0][0] = 1.0;
        int cnt = 0;
        for(int i = 1; i <= m; ++i, cnt ^= 1){
            for(int j = 1; j <= n; ++j)
                for(int k = 0; k <= j; ++k)
                    dp[cnt][j][k] = dp[cnt][j-1][k] * (1.0 - a[i][j]) + dp[cnt][j-1][k-1] * a[i][j];
            sum[i][0] = 0.0;
            for(int k = 1; k <= n; ++k)
                sum[i][k] = sum[i][k-1] + dp[cnt][n][k];
        }

        double ans1 = 1.0, ans2 = 1.0;
        for(int i = 1; i <= m; ++i)  ans1 *= sum[i][n];
        for(int i = 1; i <= m; ++i)  ans2 *= sum[i][t-1];
        printf("%.3f\n", ans1-ans2);
    }
    return 0;
}

 

posted on 2016-12-03 21:09  dwtfukgv  阅读(182)  评论(0)    收藏  举报
刷新页面返回顶部
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3