题意:给定G,L,分别是三个数最大公因数和最小公倍数,问你能找出多少对。
析:数学题,当时就想错了,就没找出规律,思路是这样的。
首先G和L有公因数,就是G,所以就可以用L除以G,然后只要找从1-(n=L/G),即可,那么可以进行质因数分解,假设:
n = p1^t1*p2^t2*p3^t3;那么x, y, z,除以G后一定是这样的。
x = p1^i1*p2^i2*p3^i3;
y = p1^j1*p2^j2*p3^j3;
z = p1^k1*p2^k2*p3^k3;
那么我们可以知道,i1, j1, k1中最少一个t1,最多2个,0也是,考虑最大公因数,所以就会有下面三种方案。
0 0 t1 排列有三种
0 t1 t1 排列有三种
0 t1 1-t1-1 排列有(t1-1)*6种
所以加起来有t1*6种,那么只要找质因数的指数就好。
代码如下:
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
using namespace std ;
typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f3f;
const double eps = 1e-8;
const int maxn = 56 + 5;
const int dr[] = {0, 0, -1, 1};
const int dc[] = {-1, 1, 0, 0};
int n, m;
inline bool is_in(int r, int c){
    return r >= 0 && r < n && c >= 0 && c < m;
}
int main(){
    int T;  cin >> T;
    while(T--){
        int g, l;
        cin >> g >> l;
        if(l % g)  printf("0\n");
        else {
            int gl = l / g;
            int n = sqrt(gl+0.5);
            int ans = 1;
            for(int i = 2; i <= n && gl > 1; ++i){
                if(gl % i == 0){
                    int cnt = 0;
                    while(gl % i == 0){
                        gl /= i;
                        ++cnt;
                    }
                    ans *= cnt * 6;
                }
            }
            if(gl != 1)  ans *= 6;
            cout << ans << endl;
        }
    }
    return 0;
}
                
            
        
浙公网安备 33010602011771号