3.3数据挖掘作业-财政收入影响因数分析及预测
#描述性统计分析
# 对各属性进行描述性统计分析 def statisticAnalysis(): inputfile = '../data/data.csv' # 输出的数据文件 data = pd.read_csv(inputfile) # 读数据 # 最小值、最大值、均值、标准差 description = [data.min(), data.max(), data.mean(), data.std()] # 将结果存入数据框 description = pd.DataFrame(description, index=["Min", "Max", "Mean", "STD"]).T print("描述性统计结果:\n", np.round(description, 2)) # 保留两位
# 求解原始数据的Pearson相关系数矩阵 def correlationCoefficientMatrix(data): inputfile = '../data/data.csv' # 输出的数据文件 data = pd.read_csv(inputfile) # 读数据 corr = data.corr(method='pearson') # 计算相关系数矩阵 print("相关系数矩阵为:\n", np.round(corr, 2)) # 保留两位 return corr # 绘制相关性热力图 def thermodynamic(corr): plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文标签 plt.rcParams['axes.unicode_minus']=False plt.subplots(figsize=(10, 10)) sns.heatmap(corr, annot=True, vmax=1, square=True, cmap="Blues_r") plt.title("相关性热力图 3102") plt.show() plt.close()
#构建模型并预测 # 构建灰色预测模型并预测 def grey(): sys.path.append("D:/作业/数据挖掘/tmp") inputfile1 = "../data/new_reg_data.csv" inputfile2 = "../data/data.csv" new_reg_data = pd.read_csv(inputfile1) data = pd.read_csv(inputfile2) new_reg_data.index = range(1994, 2014) new_reg_data.loc[2014] = None new_reg_data.loc[2015] = None cols = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] for i in cols: f = GM11(new_reg_data.loc[range(1994, 2014), i].values)[0] new_reg_data.loc[2014, i] = f(len(new_reg_data)-1) # 2014年预测结果 new_reg_data.loc[2015, i] = f(len(new_reg_data)) # 2015年预测结果 new_reg_data[i] = new_reg_data[i].round(2) outputfile = '../tmp/new_reg_data_GM11.xls' # 灰色预测后保存路径 y = list(data['y'].values) y.extend([np.nan, np.nan]) new_reg_data['y'] = y new_reg_data.to_excel(outputfile) print("预测结果为:\n",new_reg_data.loc[2014:2015,:]) # 构建支持向量回归预测模型 def SVR(): from sklearn.svm import LinearSVR inputfile = '../tmp/new_reg_data_GM11.xls' data = pd.read_excel(inputfile) feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] data.index = range(1994, 2016) data_train = data.loc[range(1994, 2014)].copy() data_mean = data_train.mean() data_std = data_train.std() data_train = (data_train - data_mean)/data_std x_train = data_train[feature].to_numpy() y_train = data_train['y'].to_numpy() linearsvr = LinearSVR() linearsvr.fit(x_train, y_train) x = ((data[feature] - data_mean[feature])/data_std[feature]).to_numpy() data[u'y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y'] # outputfile = '../tmp/new_reg_data_GM11_revenue.xls' # data.to_excel(outputfile) print("真实值与预测值分别为:\n",data[['y', 'y_pred']]) plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文标签 plt.rcParams['axes.unicode_minus'] = False fig = data[['y', 'y_pred']].plot(subplots = True,style=['b-o', 'r-*']) plt.title("3102") plt.show()
#GM(1,1) def GM11(x0): # 自定义灰色预测函数 import numpy as np x1 = x0.cumsum() # 1-AGO序列 z1 = (x1[:len(x1)-1] + x1[1:])/2.0 # 紧邻均值(MEAN)生成序列 z1 = z1.reshape((len(z1),1)) B = np.append(-z1, np.ones_like(z1), axis = 1) Yn = x0[1:].reshape((len(x0)-1, 1)) [[a],[b]] = np.dot(np.dot(np.linalg.inv(np.dot(B.T, B)), B.T), Yn) # 计算参数 f = lambda k: (x0[0]-b/a)*np.exp(-a*(k-1))-(x0[0]-b/a)*np.exp(-a*(k-2)) # 还原值 delta = np.abs(x0 - np.array([f(i) for i in range(1,len(x0)+1)])) C = delta.std()/x0.std() P = 1.0*(np.abs(delta - delta.mean()) < 0.6745*x0.std()).sum()/len(x0) return f, a, b, x0[0], C, P # 返回灰色预测函数、a、b、首项、方差比、小残差概率


浙公网安备 33010602011771号